
Petr Aubrecht

Ontology Transformations
Between Formalisms

22. 11. 2005

Overview

● motivation
● what are ontologies
● existing formalisms
● formalism transformations
● my approach
● results

Motivation

● CIPHER project → which formalism for
historical stories annotation?
– OWL

● frequently used, daml.org
– OCML

● LISP based with rules and procedural part
● time ontology, dissertation of Kamil Matoušek
● (used by project partners)
● => need of transformation

● semantic web
– multiple sources & different formalisms

Definition of Ontology

● Gruber, 1996, An ontology is a explicit
specification of a conceptualisation.

● Borst, 1997, An ontology is a formal
specification of a shared conceptualisation.
– formal: machine-readable
– shared: rather strong requirement, should

represent consensual knowledge of a group

● Sowa, 2000, Ontology defines the kinds of
things that exist in the application domain.

Ontology Formalisms

● LISP based
– KIF (SUO-KIF), Ontolingua, OCML

● XML based (for semantic web)
– XOL, RDF-S, DAML-ONT, DAML+OIL, OWL

● Others
– Conceptual Graphs, Topic Maps, FCA, ...
– E-R, UML

Ontology Formalisms for Web

● RDF etc. – too free (informal) definition
● easy for designer, hard to evaluate
● reification – statements as resources, the

language becomes undecidable
● OWL

full: compatible with RDF-S
DL: decidable reasoning is realizable,
separated classes, instances,
properties, and types
lite: minimal

useful subset

HTML XML

SHOE XOL RDF

RDF-S

OILDAML-ONT

DAML+OIL

OWL

Possible Problem (in OWL Full)

<owl:Class rdf:ID="A">
 <owl:equivalentClass>
 <owl:Restriction>
 <owl:onProperty rdf:resource=".../22-rdf-syntax-ns#type"/>
 <owl:allValueFrom rdf:about="#B"/>
 </owl:Restriction>
 </owl:equivalentClass></owl:Class>
<owl:class rdf:ID="B">
 <owl:complementOf rdf:parseType="Collection">
 <owl:Class rdf:about="#A"/>
 </owl:complementOf></owl:class>
<owl:Thing rdf:ID="C">
 <rdf:type rdf:resource="#A"/>
</owl:Thing>

OIL – Simple Standard

● Ontology Inference Layer, year 2000
● DTD
● <?xml version="1.0" encoding="UTF-8"?>
● <!-- DTD for Ontology Integration Language OIL -->
● <!-- version 01 May 2000 -->
● <!ELEMENT oil:ontology (oil:ontology-container, oil:ontology-definitions)>
● <!-- Ontology container -->
● <!ELEMENT oil:ontology-container (rdf:RDF)>
● <!-- This part contains meta-data about the ontology.
● It is formatted according [Miller et al., 1999] -->
● <!ELEMENT rdf:RDF (rdf:Description)>
● <!ATTLIST rdf:RDF
● xmlns:rdf CDATA #FIXED "http://www.w3.org/1999/02/22-rdf-syntax-ns#"
● xmlns:dc CDATA #FIXED "http://purl.oclc.org/dc#"
● xmlns:dcq CDATA #FIXED "http://purl.org/dc/qualifiers/1.0/"
● >
● <!ELEMENT rdf:Description ((dc:Title+, dc:Creator+, dc:Subject*, dc:Description+, dc:Publisher*, dc:Contributor*, dc:Date*, dc:Type+, dc:Format*, dc:Identifier+, dc:Source*, dc:Language+, dc:Relation*, dc:Rights*) | (dcq:descriptionType, rdf:value) | (dcq:relationType, rdf:value))>
● <!ATTLIST rdf:Description
● about CDATA #IMPLIED
● >
● <!ELEMENT dc:Title (#PCDATA)>
● <!ELEMENT dc:Creator (#PCDATA)>
● <!ELEMENT dc:Subject (#PCDATA)>
● <!ELEMENT dc:Description (#PCDATA | rdf:Description)*>
● <!ELEMENT dc:Publisher (#PCDATA)>
● <!ELEMENT dc:Contributor (#PCDATA)>
● <!ELEMENT dc:Date (#PCDATA)>
● <!ELEMENT dc:Type (#PCDATA)>
● <!ELEMENT dc:Format (#PCDATA)>
● <!ELEMENT dc:Identifier (#PCDATA)>
● <!ELEMENT dc:Source (#PCDATA)>
● <!ELEMENT dc:Language (#PCDATA)>
● <!ELEMENT dc:Relation (#PCDATA | rdf:Description)*>
● <!ELEMENT dc:Rights (#PCDATA)>
● <!ELEMENT dcq:descriptionType (#PCDATA)>
● <!ELEMENT dcq:relationType (#PCDATA)>
● <!ELEMENT rdf:value (#PCDATA)>
● <!-- Ontology-definitions -->
● <!ELEMENT oil:ontology-definitions (oil:imports?, oil:rule-base?, (oil:class-def | oil:slot-def)*)>
● <!-- Import-section with URI's to other ontology-files -->
● <!ELEMENT oil:imports (oil:URI)+>
● <!ELEMENT oil:URI (#PCDATA)>
● <!-- Rules with URL to definition -->
● <!ELEMENT oil:rule-base (#PCDATA)>
● <!ATTLIST oil:rule-base
● type CDATA #REQUIRED
● >
● <!-- Class-expressions -->
● <!ENTITY % oil:class-expr "(oil:class | oil:slot-constraint | oil:AND | oil:OR | oil:NOT)">
● <!ELEMENT oil:AND ((%oil:class-expr;), (%oil:class-expr;)+)>
● <!ELEMENT oil:OR ((%oil:class-expr;), (%oil:class-expr;)+)>
● <!ELEMENT oil:NOT (%oil:class-expr;)>
● <!-- Class-definition -->
● <!ELEMENT oil:class-def (oil:class, oil:documentation?, oil:subclass-of?, oil:slot-constraint*)>
● <!ATTLIST oil:class-def
● type (primitive | defined) "primitive"
● >
● <!-- Class-name -->
● <!ELEMENT oil:class EMPTY>
● <!ATTLIST oil:class
● name CDATA #REQUIRED
● >
● <!ELEMENT oil:documentation (#PCDATA)>
● <!ELEMENT oil:subclass-of (%oil:class-expr;)+>
● <!-- Slot-definition -->
● <!ELEMENT oil:slot-def (oil:slot, oil:documentation?, oil:subslot-of?, oil:domain?, oil:range?, oil:inverse?, oil:properties?)>
● <!-- Slot-name -->
● <!ELEMENT oil:slot EMPTY>
● <!ATTLIST oil:slot
● name CDATA #REQUIRED
● >
● <!ELEMENT oil:subslot-of (oil:slot)+>
● <!ELEMENT oil:domain (%oil:class-expr;)+>
● <!ELEMENT oil:range (%oil:class-expr;)+>
● <!ELEMENT oil:inverse (oil:slot)>
● <!-- Slot-properties -->
● <!ELEMENT oil:properties (oil:transitive | oil:symmetric | oil:other)*>
● <!ELEMENT oil:transitive EMPTY>
● <!ELEMENT oil:symmetric EMPTY>
● <!ELEMENT oil:other (#PCDATA)>
● <!-- Slot-constraint -->
● <!ELEMENT oil:slot-constraint (oil:slot, (oil:has-value | oil:value-type | oil:cardinality | oil:max-cardinality | oil:min-cardinality)+)>
● <!ELEMENT oil:has-value (%oil:class-expr;)+>
● <!ELEMENT oil:value-type (%oil:class-expr;)+>
● <!ELEMENT oil:cardinality (oil:number, %oil:class-expr;)+>
● <!ELEMENT oil:max-cardinality (oil:number, %oil:class-expr;)+>
● <!ELEMENT oil:min-cardinality (oil:number, %oil:class-expr;)+>
● <!ELEMENT oil:number (#PCDATA)>
●

Procedural Part, Rules, Actions

● done in LISP (by LISP)
● OWL: under development

– e.g. ORL; A Proposal for an OWL Rules
Language, Horrocks and Patel-Schneider

– SPARQL

– KAON2
– FACT
– RACER

Transformations

Transformations –
Incompatibility

RDF-S (DAML, OWL) → OCML (frames)
● sub-property – hierarchy of properties

father-of is a sub-property of parent-of (all fathers
are also parents)

● instance of instance – there can be instance
of another instance
OWL system: XMLLiteral instanceOf Datatype

instanceOf Class
wine ontology: ChateauMorgonBeaujolais

instanceOf Beaujolais (instanceOf Class)
Particular bottle of CMB?

Incompatibility

RDF-S (DAML, OWL) → OCML (frames)
● properties without domain or range defined
● restrictions used to specify default property

values
● ...

State-of-the-art – Practical

● (Almost) Every project starts with building its
own ontology
– the requirement of sharing!

● big ambiguity in expressions in OWL (e.g.
ont/concept, ont#concept; owl:Class,
daml:Class), unparseable files
– only authors are able to process the ontologies

● Editors store in multiple formalisms.
– mostly only export

● LISP-based ontologies rely on procedures,
e.g. only patterns can be searched.

State-of-the-art – Theoretical

● Mapping Approach
– 2n transformations

● Pivot Approach
– using the most expressive formalism

● Layered Approach
– for backward compatible formalisms

● Family of Languages
– lattice of languages

My Approach

● simple formalism
● cover most important and general features
● more complex features are expressed as

combinations

Generalised Ontology Formalism

Generalised Ontology
Formalism

● concepts + 6 relations

subclassOf
specialisation relation between a more general and a more specific concepts

Generalised Ontology
Formalism

● concepts + 6 relations

instanceOf
decrease of abstractness of the concept. It corresponds to the is-a in frames.

Generalised Ontology
Formalism

● concepts + 6 relations

has-domain
“domain of a property,” this property is a property of the target class

Generalised Ontology
Formalism

● concepts + 6 relations

has-range
“range of a property”

Generalised Ontology
Formalism

● concepts + 6 relations

propertyOf
“an assignment of a value to an instance of a property domain”

Generalised Ontology
Formalism

● concepts + 6 relations

has-value
“a particular value of a property”

GOF Gates, FSO

● each gate
contains FSO
with specific
concepts
(class,
instance,
property etc.),
C

F
, R

F

FSO of Frames (OCML)

FSO of RDFS

FSO of OWL (part)

Uninformed Transformation

GOF

OW
L

Apollo

<owl:Ontology>
<owl:Class>

<SubclassOf>...
</owl:Class>
<owl:ObjectProperty>

SQL

<KnowledgeBase>
<class>

<subclasses>...
<slots>

<slot...
</slots>

<class>

mapping to g.o.

● Loaded
without
FSO, GOF
is mapped
to the
target
FSO.

Informed Transformation

GOF

OW
L

Apollo

<owl:Ontology>
<owl:Class>

<SubclassOf>...
</owl:Class>
<owl:ObjectProperty>

<KnowledgeBase>
<class>

<subclasses>...
<slots>

<slot...
</slots>

<class>

Known Translation

● There
exists
transform.
between
FSOs, no
further
mapping is
needed.

Tests of Inform. Trans.

Ontology Formalism Conc. Rels
Hist. arch. 178 205 1,051
CRM Apollo>OWL 183 281 985
Trivial OWL>Apollo 4 2 47
Wine1 OWL>Apollo 72 82 97
Wine OWL>Apollo 713 1,724 4,543
SUMO OWL>Apollo 1,434 1,729 26,458
OpenCyc OWL>Apollo 71,939 85,919 N/A

Time (ms)

Apollo>OWL

Tests of Uninform. Trans.

Ontology Formalism Conc. Rels
Hist. arch. 178 205 976
CRM Apollo>OWL 183 281 903
Trivial OWL>Apollo 4 2 37
Wine1 OWL>Apollo 72 82 99
Wine OWL>Apollo 713 1,724 2,531
SUMO OWL>Apollo 1,434 1,729 35,560
OpenCyc OWL>Apollo 71,939 85,919partially (1.2 s)

Time (ms)

Apollo>OWL

Results

● OpenCyc OWL to Apollo – crash during save
in Apollo library due to ineffective work with
memory in Apollo

● OpenCyc: loading takes ~2.5 hour due to
ineffective gate (frequent search,
complicated API of Jena2)

● OpenCyc: mapping takes 1.2 sec (simple
structure)

● SUMO: mapping takes 32 secs (complex
structure)

SumatraTT for Testing

Conclusion

1)Generalised Ontology Formalism
– GOF allows for comparison of formalisms (by

FSO)
– covers wide range of possible situations (not

restricted to currently known formalisms)

2)informed/uninformed transformation
– FSO expressed by means of GOF
– universal concept principle

● allows to change types – class, property, instance
● transformation can be lossy, if there is no possible

way to convert some features

Conclusion

3)successful methodology evaluation on upper
ontology migration
– OWL, OCML (Apollo)
– SUMO, Cyc

Thank you for your attention.

Questions?

Reviews, Common

● mistakes in mathematics
– my first work with math. definitions
– but the domain requires formal description in

order to find common platform for ontology
sharing/transformations

● slightly varying shapes of relations
– only graphviz and TeX are able to display all the

types, no interactive vector editor offering these
types, number of common arrow types for three
programs is less than 6

– my fault: not mentioned in the text

Doc. Ing. J. Paralič, Ph.D.

● feasibility of common standard for semantic
web
– HTML: one standard, multiple versions
– IM, VOIP: multiple non-cooperating standards
– if common standard will be accepted, s. w. will

have significant influence on everyday life
● operations on GOF model in all supported

formalisms
– UNION, DIFF (detect changes, A-B ∪ B-A),

SUBSET
– diff: works, used during testing, but results are in

GOF (need some explanation, in which the
ontologies differ)

– union: rather matter of concept mapping, not
tested

Prof. RNDr. M. Demlová, CSc.

● ontology grammar → formalism grammar
● more results

– memory is not important (linearly dependent on
source size)

– gate implementations dependent on used library
– only interesting point is the mapping engine

(from GOF graph to FSO)
● non-polynomial due to ambiguity in rules (e.g.

instanceOf for class/instance and
property/assignment)

● small isolated cases
● used for its simplicity and ability to find best mapping,

can be replaced

Prof. Demlová (cont.)

● more practical results
– implementation is straightforward (e.g. usually

linear both time and space complexity)
● only interesting point is mapping from GOF

to FSO (decides types of concepts)
– FSO provides a set of valid relations (e.g. Class

sublassOf Class, Instance instanceOf Class)
– used NP algorithm, problematic are small groups

of nodes
– From OWL to
– SUMO, 1.434 concepts, 32 secs
– OpenCyc, 71.939 concepts, 1.2 sec

Doc. Ing. Z. Zdráhal, CSc.

history:
● 1957 artificial intelligence, Herbert Simon:

“Machines already think, learn, and create.”
(e.g. Advice Taker)

● 1969 expert systems (DENDRAL)
● 1984 Cyc project – huge knowledge base
● semantic web requires definition of terms
● ontology

– what is the essence of things, categorisation...
– back to philosophy... 5th century B.C.

● Aristotle: Truth, Beauty, Virtue, and Justice
● Socrates: ten categories

Comparison with Languages

Formal Languages
● symbol
● alphabet (finite set

of s.)
● string (f. sequence

of s.)
● language (set of

strings)
● grammar (V,T,P,S)
● language generate

by grammar...

Ontologies
● concept
● set of used

concepts, C
● ontology, 
● +
● +
● formalism

Comparison with Languages

Formal Languages
● symbol
● alphabet (finite set

of s.)
● string (f. sequence

of s.)
● language (set of

strings)
● grammar (V,T,P,S)
● language generated

by grammar...

Ontologies
● concept
● set of used

concepts, C
● ontology, 
● formalism, F
● formalism grammar,


● formalism (set of
ontologies) has
common set of
features given by
grammar

Formal Definitions

● need to distinguish formalism as a
description of a “language” from a set of
ontologies

● emphasis on syntactic transformation
● formalism grammar
● ontology
● ontology formalism

Formalism Grammar Definition

 = (C
F
, R

F
, S

F
, S

F
, A

F
)

– C
F
= set of formalism concepts

– R
F
 = set of formalism relations

– S
F
 = set of structural restrictions on relations

between ontology concepts
– S

F
 = language to specify additional restrictions

– A
F
 = language to specify actions

Ontology Definition

 = (C, R, 
C
, 

R
, S, A)

– C

= set of concepts

– R = set of relations
– 

C
 = function 

C
: C → C

F

– 
R
 = function 

R
: R → R

F

– S = set of restrictions
– A = set of actions

Ontology Formalism Definition

● A formalism is a set of ontologies with
common sets of formalism concepts and
relations.

class-a, property, class-b

● various shapes are only for our orientation
(uniform for GOF)

● when migrated to OCML, class-a, class-b,
subclass-b become classes, property
becomes slot, instance-a/b become
instances
and assignment
is translated
into assignment
into slot

Discussion

● formalism-specific information preservation
– needed e.g. for diff of two ontologies in the same

formalism
– representation of diff

● need for speed optimisation, simple gates for
fast load/save

● rule handling
● evaluation in GOF
● further mathematical research(?)
● border between structural and procedural

restrictions

APPENDIX

Visualisation

● gates exporting to visualisation tools
(GraphViz, Prefuse, HyperGraph,
TouchGraph, Wilmascope)

