
Ontology Transformations Between
Formalisms

Petr Aubrecht

dissertation thesis
Study Programme: Electrical Engineering and Informatics
Branch of Study: Artificial Intelligence and Biocybernetics

2005

Supervisor: Prof. RNDr. Olga Štěpánková CSc.
Supervisor specialist: Doc. Ing. Zdeněk Kouba CSc.

The Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Cybernetics
Prague, Czech Republic

ii

Acknowledgement

I would like to express my sincere gratitude and appreciation to my advisors Prof. RNDr.
Olga Štěpánková CSc. and Doc. Ing. Zdeněk Kouba CSc. for providing me with the
opportunity to work in the research in data mining and knowledge management, for
their expert guidance and mentorship, and for their encouragement and support at all
levels.

I would like to thank my colleagues, who helped me to start this thesis, for their
advises and critiques. I would like to emphasise Kamil Matoušek and Monika Žáková.

Finally, I would like to thank my family for their love, support, and especially for my
wife Věra’s patience.

iii

iv

Brief Contents

Contents vii

List of Figures xi

List of Tables xiii

1 Thesis Objectives 1

2 Introduction 3

3 Historical Background – From Chess Players to Ontologies 5

4 Ontologies 15

5 Ontology Transformations Between Formalisms 55

6 SumatraTT 99

7 Conclusion 125

Bibliography 127

v

BRIEF CONTENTS

vi

Contents

Contents vii

List of Figures xi

List of Tables xiii

1 Thesis Objectives 1

2 Introduction 3
2.1 Used Notation . 4

3 Historical Background – From Chess Players to Ontologies 5
3.1 From Chess Players to Computing Machines 5
3.2 Arise of Artificial Intelligence . 7
3.3 Expert Systems . 9
3.4 The Cyc Project . 10
3.5 Raise of Internet . 11

3.5.1 Searching on the Internet . 12
3.5.2 Google . 13

3.6 Semantic Web . 13

4 Ontologies 15
4.1 History of Ontologies . 15

4.1.1 Semantic Web . 18
4.2 Current Definitions of Ontology . 20
4.3 Formal Definitions . 21

4.3.1 Concepts and Relations . 22
4.3.2 Ontology and Ontology Formalism 22
4.3.3 Simple Formalisms . 25
4.3.4 Running Example . 26

4.4 Overview of Formalisms . 28
4.5 Frame-Based . 28

4.5.1 Conceptual Graphs . 29
4.5.2 KIF . 29
4.5.3 Ontolingua . 31

vii

CONTENTS

4.5.4 OCML . 32
4.5.5 CycL . 33
4.5.6 UML, E-R Diagrams . 34

4.6 Description Logics . 35
4.7 Designed for Semantic Web . 37

4.7.1 Topic Maps . 37
4.7.2 SHOE . 38
4.7.3 XOL . 38
4.7.4 RDF . 39
4.7.5 RDF Schema . 40
4.7.6 DAML-ONT . 42
4.7.7 OIL . 42
4.7.8 DAML+OIL . 42
4.7.9 OWL . 43

4.8 Non-ontology Formalisms . 45
4.9 Software Support . 47

4.9.1 Editors . 47
4.9.2 Engines . 48

4.10 Upper Ontologies . 49
4.10.1 Cyc . 49
4.10.2 WordNet . 50
4.10.3 Wikipedia . 50
4.10.4 SUMO . 51
4.10.5 CRM . 52

4.11 Others . 53
4.11.1 Dublin Core Metadata Initiative 53

5 Ontology Transformations Between Formalisms 55
5.1 Motivation . 55

5.1.1 CIPHER Project . 56
5.2 Migration within One Formalism . 57
5.3 Known Approaches . 59

5.3.1 Mapping Approach . 59
5.3.2 Pivot Approach . 59
5.3.3 Layered Approach . 60
5.3.4 Family of Languages . 60
5.3.5 Separated Worlds . 60

5.4 Software Support . 61
5.4.1 Ontolingua . 61
5.4.2 Generic Frame Protocol . 62
5.4.3 Open Knowledge Base Connectivity 62
5.4.4 Chimaera . 63
5.4.5 Further Tools . 63

5.5 Formal Definitions . 64

viii

CONTENTS

5.6 Generalised Ontology Formalism . 66
5.6.1 Evolution of Relations . 67
5.6.2 Generalised Ontology Formalism Definition 68
5.6.3 Gates . 71
5.6.4 Formalism-Specific Ontology . 71
5.6.5 Mapping Engine . 72
5.6.6 Models of Selected Formalisms . 73
5.6.7 (Un)Informed Transformation . 75
5.6.8 Solution for Untransformable Parts of Ontology 79
5.6.9 Operations . 79
5.6.10 Common Problems Solved . 80
5.6.11 Subproperty Problem . 81
5.6.12 Instance of Instance . 84
5.6.13 Restriction Handling . 85
5.6.14 Visualisation . 86

5.7 Implementation . 90
5.8 Results . 93

5.8.1 Testing Environment . 93
5.8.2 Measurements . 93

5.9 Conclusion . 97

6 SumatraTT 99
6.1 History of SumatraTT . 99

6.1.1 SumatraTT 1.0 . 99
6.1.2 SumatraTT 2.0 . 100
6.1.3 Graphical Interface for Data Preprocessing 102

6.2 Features . 103
6.2.1 Basic Concepts . 103
6.2.2 Advanced Features . 104
6.2.3 Stream design . 105
6.2.4 AutoDocumentation . 107
6.2.5 Available Modules . 109
6.2.6 Amount of Processed Data . 112

6.3 SumatraTT and Data Transformation Tasks 113
6.3.1 Visualisation . 115
6.3.2 Some additional modules . 116
6.3.3 Practical Application in Data Preprocessing 116

6.4 SumatraTT in Knowledge Management 117
6.4.1 Testing Modules . 117

6.5 Implementation of Generalised Ontology Formalism in SumatraTT . . . 121
6.5.1 GOF Implementation . 121
6.5.2 Module Conversion . 121
6.5.3 Example . 121
6.5.4 Background Knowledge of Transformation 121

ix

CONTENTS

6.6 SumatraTT Summary . 122

7 Conclusion 125

Bibliography 127

x

List of Figures

3.1 Analytical Engine . 6
3.2 Colossus helped to break Nacist secret military codes 7
3.3 First American Computer . 8
3.4 CERN, Tim Berners-Lee: figure from WWW proposal 11

4.1 Aristotle’s ten basic categories (in leaves) 15
4.2 Conceptual graph from 13th century by Ramon Lull 16
4.3 Linnaean taxonomy . 17
4.4 Conceptual graph: Tom believes [Mary wants [to marry a sailor]] 18
4.5 Semantic web: superimposed semantic networks from multiple descriptions 19
4.6 Architecture of Semantic web from December 2000 20
4.7 Running example as a taxonomy . 27
4.8 Running example in a semantic network 27
4.9 Running example in a conceptual graph 30
4.10 Running example in UML . 34
4.11 Hierarchy of semantic web formalisms . 37
4.12 Upper concepts in Cyc . 49
4.13 Wikipedia article count from January 2001 to December 2004 50
4.14 Upper concepts in SUMO . 51
4.15 Upper concepts in CRM . 52

5.1 A schema of a part of CIPHER tools . 58
5.2 Separated world of ontology formalisms 61
5.3 Ontolingua, translation from one formalism into multiple ones 62
5.4 The architecture of the Common Lisp implementation of OKBC. 63
5.5 Running example using is-a and has-a relations 68
5.6 Examples of GOF relations . 69
5.7 Sample Ontology in GOF . 70
5.8 Variants of arrays in properties . 70
5.9 Partially defined properties in DLs . 70
5.10 Running example using the generalised ontology formalism 71
5.11 GOF Gates . 72
5.12 Piece of ontology to be mapped . 72
5.13 FSO of frames . 74
5.14 FSO of RDFS . 75

xi

LIST OF FIGURES

5.15 FSO of OWL . 76
5.16 Ontology in GOF without (a) and with FSO (b) 77
5.17 Informed transformation . 78
5.18 Uninformed transformation . 79
5.19 Subproperty in GOF . 81
5.20 Impossibility to draw a graph with subproperty in RDFS 81
5.21 Subproperty in the running example . 82
5.22 First (bad) solution of the subproperty problem 82
5.23 Ontology with subproperties . 84
5.24 Sample Ontology in GOF . 84
5.25 Translated ontology . 85
5.26 OWL restriction model in GOF . 85
5.27 Tree (1.5D) visualisation of ontology . 87
5.28 2D visualisation of ontology (TouchGraph) 88
5.29 3D visualisation of ontology (Wilmascope) 89
5.30 Prefuse output in detail . 91
5.31 Prefuse output – overview . 91
5.32 Hypergraph output in detail . 92

6.1 SumatraTT 2.0 screenshot . 101
6.2 SumatraTT 2.0 Structure . 107
6.3 Support for documentation in transformation schema 108
6.4 Project documentation in HTML format 109
6.5 Example of scripting in SumatraTT . 110
6.6 SumatraTT 2.0 XML processing . 111
6.7 Scatter plot matrix for STULONG data – dependencies between pairs of

selected attributes: weight, systolic pressure, diastolic pressure, choles-
terol, nicotine level and time. 114

6.8 3D graph with column split wrt. classification 116
6.9 A tree of class inheritance generated by the Apollo2dot module 118
6.10 An entry page of the PATExporter output 119
6.11 HTML pages generated by the PATExporter module with an index of

classes . 119
6.12 An instance with an image attached with a list of properties 120
6.13 Ontology processing in SumatraTT . 122
6.14 An ontology migration between the OWL and Prolog formalisms 122
6.15 An ontology migration with verification 123

xii

List of Tables

4.1 Comparison of a formal language and ontology definitions 23
4.2 Ontology Formats . 29
4.3 Set of constructors of Description Logics 35

5.1 Example of mapping rules . 73
5.2 Mapping rules for frames . 74
5.3 Mapping rules for OWL . 77
5.4 Summary of differences between the knowledge models of RDF and Pro-

tégé-2000 . 80
5.5 Warm-up times for Apollo and OWL engines 94
5.6 Whole informed transformation times . 95
5.7 Uninformed transformation times . 95
5.8 Time of ontology loading without FSO (φC = ∅) 96
5.9 Time of ontology loading with FSO (φC 6= ∅) 96
5.10 Informed transformation times (without loading and saving) 96
5.11 Mapping times . 97

xiii

xiv

Abstract

This thesis describes a platform for sharing ontologies in the world of various formalisms,
editors, inference and query engines. For seamless cooperation of future systems it is
necessary to bridge differences in design and purpose between various ontology sources.

Ontology formalisms tend to be rather complex and from certain point their semantics
become unclear. Historically older formalisms incorporate general Lisp expressions as
parts of ontologies, newer ones started from a simpler model, but the gradually increasing
express power concurrently introduces requirement of computation into the ontology.

The ontology structure is clearly defined in simple formalisms like topic maps. Adding
computations means decreasing this clarity and the ontology is locked up within the
particular language.

This work defines a formal definition of ontologies in order to clearly separate differ-
ent kinds of information. Further it introduces a framework for ontology sharing and
transformation together with a solution how to handle the untransformable parts of
ontologies. The framework is based on a Generalised Ontology Formalism (GOF), a
graphical language consisting of a set of concepts and six relations. There are defined
rules for transformation between GOF and generally used formalisms as well as all the
accompanying definitions and theorems.

xv

xvi

1 Thesis Objectives

As internet was growing, intelligent processing of the available information and searching
relevant data within it became necessary. The need of computer programs with “common
sense” also meets the problems of limited use of expert systems. Programs have to know
the context of their work in order to provide meaningful results.

Ontologies are used for description of the world. An example of a long-term project
developing ontologies is Cyc, aiming to describe all the human background knowledge
and allow computers to think “with human-level breadth and depth of knowledge.”

Ontologies are created in various languages, depending on the requests of the domain
and available tools suitable for the given domain. One group of such languages is based
on Lisp, developed especially for artificial intelligence. Languages in this group usually
use frames, introduced by M. Minsky in 1975. In the other group there are languages
using description logics constructs and XML for storage.

As the term “language” is used in several meanings, “language” will be called the way
of encoding for persistence purposes. Language at this level is an ordered set of symbols.
A description at a higher level will be denoted as “formalism.” Several formalisms (e.g.
RDF) allow encoding in more than one language (XML or N3).

Unfortunately, a conversion of ontologies between formalisms is a rather difficult prob-
lem. Formalisms are used being mutually incompatible in their constructs and often
include procedural constructs to express features, dependencies, or restrictions in the
knowledge base.

Goals

The main objective of this thesis is to provide a framework for transformation of ontolo-
gies between various formalisms. In order to achieve this major objective, the following
goals had to be accomplished:

• Currently available definitions of ontology do not provide sufficient formal basis
for making analyses, comparisons, and conversions of ontologies. Hence, a more
formal definitions of ontology from syntactical point of view and definitions of
further formal terms like formalism are necessary to be introduced.

• Formal definition of ontology transformation has to be defined making use of the
developed formal definition of ontology.

• Demands on properties of such transformations need to be specified.

1

1 Thesis Objectives

• A generalised formalism, which will allow expressing meta-models of all common
ontology formalisms, needs to be designed and the respective meta-models of in-
dividual ontology formalisms shall be expressed by means of this generalised one.

• Individual transformations making use of the generalised ontology formalism and
respective ontology formalism meta-models shall be designed.

• As the existing ontology transformations have different expression power, it is
not always possible to achieve conversion without losing some information. An
analysis of ontology transformations needs to be done with respect to the natural
requirement to lose as few information as possible.

• The whole designed framework needs to be implemented and verified on existing
publicly available ontologies. Proper candidates are large upper ontologies SUMO
and Cyc.

• Finally, the developed methodology needs to be evaluated.

2

2 Introduction

The main aim of this work in the beginning was making selected huge ontologies available
in a different ontology formalism than they were originally created. A manual rewriting
became too demanding and consequently a request for automatic translation appeared.
Later in this work it will be shown, which approach has been selected, what problems
were solved, and in which domains the solution can be applied.

The second main task done in this work is a formal framework for defining ontology
formalisms. The term ontology is exactly defined as a means to allow comparing ontology
formalisms and to identify transformable parts of ontologies.

In chapter 3, a short introduction to a history of artificial intelligence (AI) and mainly
evolution of knowledge representation will be presented. At the end of this chapter it
will be clear, that AI suffers from a limited scope of understanding of the context of
their domain and there is a need for ontologies as a background information about the
world out of the scope of the system.

The content of this thesis is divided to three parts.
The first part is formed by chapter 4 and presents ontologies as structures for express-

ing knowledge and assertions about the world. Section 4.3 introduces formal definitions,
which will be used through this work. Terms ontology and formalism are defined and a
new term ontology grammar is established.

A list of common formalisms is described in chapters 4.4 – 4.8 including few non-
standard. A description for severals important formalisms is provided in the previously
introduced definitions. In order to simplify understanding of structrures of the for-
malisms there is developed a running example. A simple ontology is encoded in most of
the presented formalisms. A short description of upper ontologies is given in 4.10.

Chapter 5 represents the second part of this thesis and is concerned with ontology
transformations between formalisms. After presenting the state-of-the-art in the domain,
an original solution is presented together with samples of transformations between some
formalisms introduced in the previous chapter. The solution is based on a formalism
called Generelised Ontology Formalism (GOF) and consists of a set of concepts and six
relations between them.

GOF is used in two roles – as a mediator in transformations of ontologies between
formalisms and as a means to describe meta-models of considered formalisms. There are
presented two methods of such transformation, their difficulties and solutions. Also a
set of operations on ontologies in GOF is specified. At the end of the chapter 5 results
of experiments are presented.

The third main part of the thesis is presented in chapter 6. It describes the software
framework called SumatraTT, its purpose, internal structure, and role in the ontology
processing. Section 6.4 is dedicated to experimental modules in knowledge management.

3

2 Introduction

SumatraTT serves as a documentation platform for experiments and verifications of
various ideas. The supported formalisms and operation are represented as modules in
SumatraTT and a transformation can be composed from them.

Final chapter 7 summarises all the achievements of this thesis.

2.1 Used Notation

In the whole thesis the following notation is used:
Rel/n relation with arity n (Rel/n ⊆ Cn)
rel(x1, x2, . . . , xn) member of Rel/n: 〈x1, x2, . . . , xn〉 ∈ Rel/n
Ω ontology, see definition 4.4 at page 24
F ontology formalism, see definition 4.5 at page 24
Ψ formalism grammar, see definition 4.3 at page 23
C set of concepts
CF, RF, SF set of concepts, relations, struct. restrictions of formalism F

SF, AF languages used to specify additional restrictions and actions
of formalism F

The Generalised Ontology Formalism, introduced in chapter 5.6, uses six kinds of
relations. Their graphical representation is listed in the following table:

Name Graphics Description

instanceOf (decreasing the abstractness of a concept
subclassOf −I specialisation relation between a more general and a

more specific concepts
has-domain −J domain of a property
has-range −� range of a property
propertyOf −<− an assignment of a value to an instance of a property

domain
has-value → a particular value of a property

4

3 Historical Background – From Chess
Players to Ontologies

The history of science unwinds in waves between enthusiasm and hope that it is possible
to achieve superior goals and comebacks to rudiments to start over with more realistic
aims. Alchemists during the era of Rudolph the II spent a lot of time on producing gold
and constructing perpetuum mobile before research in chemistry and physics. During
the time the goals lower to realistic level. At the moment capabilities of science and tech-
nology meet with demands and the results are presented, new inadequate requirements
are imposed.

This cycling is true especially for the domain of Artificial Intelligence. In the begin-
ning, it promised to solve any problem. In 1957 Herbert Simon stated, that machines
already think, learn, and create. The year after he predicted that within 10 years a com-
puter will become chess champion and prove a new important mathematical theorem.

In fact, at the beginning of the 21th century there are some partial successes, but it
is more than clear, that there are even more problems than ever expected. Before the
problem targeted in this thesis (a interoperability between knowledge representations)
is described, allow me to make a short historical introduction.

In the historical overview a special attention will be payed to information representa-
tion. Some other topics, like evolutionary computing, are omitted.

3.1 From Chess Players to Computing Machines

A specific area of great expectations is a construction of thinking machines outperforming
human intelligence. The first presented “success” was a chess machine known as “The
Turk,” invented in 1769 by Baron Wolfgang von Kempelen, a nobleman of Presburg, 1769

although in this case intelligence of the machine was in fact intelligence of the dwarf
closed inside. It took more than two hundred years machines to defeat human chess
players. In 1988, HITECH defeated Grandmaster Arnold Denker and on May 11 1997,
DEEP BLUE defeated Garry Kasparov, reigning world champion, in a classical chess
match. But in 19th century, the computers only started to learn to compute. . .

In 1837, Charles Babbage (1792–1871) designed an Analytical Engine (AE),1 a me- 1837

chanical digital computer. The idea of a mechanical computer had its predecessors –
from abacus 7000 years ago to Blaire Pascal’s gear-based mechanical adding machine in
1645. The advantage of the AE was its general engine programmable by punched cards.
Ada Byron, Countess of Lovelace, described AE in 1842 and wrote several programs 1842

1A simulator of the Analytical Engine can be now tried on site http://www.fourmilab.ch/babbage/.

5

3 Historical Background – From Chess Players to Ontologies

(a) Charles Babbage (b) Analytical Engine

Figure 3.1: Analytical Engine

for it, becoming the first computer programmer in the world.2 In the description she
expressed her scepticism about intelligence of machines: “The Analytical Engine has
no pretensions to originate anything. It can do whatever we know how to order it to
perform.” (her italics)

An invention of digital electronic computers is dated to World War II simultaneously
in three countries. Alan Turing’s team built in 1940 in the UK electromechanical Heath1940

Robinson intended to decipher German messages. When Germans switched to more
sophisticated code using their Enigma machine, the deciphering became too slow. Turing
started development of Colossus using faster vacuum tubes. It was completed in 1943.1943

Thanks to the machines developed at Bletchley Park and initial help of Polish crypto-
analysts, Britain was able to read any German message during almost whole World War
II. Their information was even much complete than German units itself. Whole work
done in Bletchley Park was declassified in the mid-1970s, revealing this part of history
of computers.

Konrad Zuse invented the first programmable computer Z-3 in 1941 in Germany. His1941

machine was using floating-point numbers and in 1945 he developed the first high-level
programming language Plankalkul.

In the United States John Atanasoff and Clifford Berry assembled the first electronic
computer between 1940 and 1942 at Iowa State University, but the project was early1942

abandoned. The most famous machine ENIAC, known as the first general-purpose,
electronic, digital computer, was designed by Drs. Eckert and Mauchly. Construction

2The programming language ADA is named in Ada Byron’s honour.

6

3.2 Arise of Artificial Intelligence

Figure 3.2: Colossus helped to break Nacist secret military codes

of the ENIAC was completed in the fall of 1945. Its very first application was to solve 1945

atomic energy problems for the Manhattan Project.

3.2 Arise of Artificial Intelligence

The start of what we now recognise as artificial intelligence was in 1943 a work of 1943

Warren McCulloch and Walter Pitts, who proposed a model of artificial neurons. Not
only they showed that any computable function (according to the Turing’s theory of
computation) can be computed by a network of connected neurons; they also suggested
that suitably defined network could learn. Later, in 1949, Donald Hebb demonstrated a 1949

simple updating rule for modifying the connection strengths between neurons.

Early 1950s show a rapid research in AI. Alan Turing proposed his test providing
a satisfactory operational definition of intelligence [51]. Claude Shannon (1950) and 1950

Alan Turing (1953) wrote chess programs for von Neumann-style conventional comput- 1953

ers. Marvin Minsky and Dean Edmonds build the first neural network computer in
1951, SNARC, which simulated a network of 40 neurons. Their position was a rather 1951

hard as the research in artificial intelligence has been seen as frivolous and not serious
enough. They had limited or no access to computers, Minsky’s Ph. D. committee had
an objections whether the area should be considered as mathematics, etc.

The official birthplace of the AI field became Dartmouth College, where John Mc-
Carthy moved to. In the summer of 1956, he organised a two-month workshop to bring 1956

together U.S. researchers interested in automata theory, neural nets, and the study of
intelligence. McCarthy convinced Minsky, Claude Shannon, Nathaniel Rochester, Tren-
chard from Princeton, Arthur Samuel from IBM, and Ray Solomonoff and Oliver Self-
ridge from MIT. Although all of them had ideas and in some cases particular applications
such as checkers, the most interesting result was the first reasoning program.

7

3 Historical Background – From Chess Players to Ontologies

Figure 3.3: First American Computer

Allen Newell and Herbert Simon from Carnegie Tech3 implemented working reasoning
program Logic Theorist which was designed to prove theorems from the famous logical
work Principia Mathematica by Alfred North Whitehead and Bertrand Russell.

The Dartmouth workshop had two main results: it got altogether all the major figures
and they agreed to adopt McCarthy’s new name of the field: Artificial Intelligence.

An important year is 1958 when McCarthy defined the high-level language Lisp (LISt1958

Processing) based on λ calculus dating from 1936. This programming language is still in
use in AI. McCarthy stressed representation and reasoning in formal logic. The article
Programs with Common Sense was probably the first paper about logic as a method of
representation of real-life knowledge and not just the subject matter of the program. He
presented his hypothetical program Advice Taker, which embodied the central principles
of knowledge representation and reasoning: formal, explicit representation of the world,
reasoning, and ability to manipulate the representation with deductive processes.

Minsky, on the other hand was interested in really working programs and concentrated
on limited domains (which became known as microworlds). James Slagle presented
SAINT program for solving simpler closed-form integration problems.

Newel and Simon went on after their Logic Theorist and in 1961 presented General1961

Problem Solver (GPS), which was designed to embody the “human thinking” approach
to solve problems. GPS generated and tested solutions under the guidance of heuristics
supplied by the programmers. The criticism of GPS is that the program’s “intelligence”

3Carnegie Tech is now Carnegie Mellon University.

8

3.3 Expert Systems

is entirely coming from the programmer (mainly via the heuristics).
Frank Rosenblatt introduced perceptron in 1962 and proved his famous perceptron 1962

convergence theorem supporting his learning algorithm. Robustness and parallelism of
a large number of elements representing an individual concept have been showed by
Winograd and Cowan in 1963. 1963

An important problem has been addressed in 1965 – a natural language commu- 1965

nication. Two best-known systems are Eliza (human therapist) and Parry (human
paranoiac). Both communicated in English, but they just syntactically manipulated
sentences prepared in advanced.4 Of course, these early programs contained little or no
knowledge of the subject of interview. Similar problems appeared in machine transla-
tions.

3.3 Expert Systems

The greatest success of micro-world approach is a type of systems known as Expert
Systems. In 1969, Bruce Buchanan, Ed Feigenbaum, and Joshua Lederberg were finding 1969

molecular structure from mass spectrometer measurements. Their program DENDRAL
was the first system separated the inference engine from a knowledge base. The same
concept was repeated in MYCIN with two differences: the knowledge was acquired by
interviews with experts, and the calculus of uncertainty was involved. The MYCIN
system outperformed junior doctors and was as good as some experts.

A number of languages have been developed for knowledge representation. In Europe
and Japan became popular Prolog (PROgramming in LOGic), using powerful theorem-
proving technique known as resolution and which was first implemented in 1973. In 1973

declarative description of a problem is closer to the human’s way of thinking. Other
recent work includes the development of languages for reasoning about time-dependent
data such as “the invoice was paid yesterday”. These languages are based on tense logic,
a type of logic that permits statements to be located in the flow of time. (Tense logic
was invented in 1953 by the philosopher Arthur Prior at the University of Canterbury,
New Zealand.)

A different approach represented more structured frames of Marvin Minsky in 1975. A 1975

frame represented a particular object and collected facts about it. Frames were arranged
into large taxonomic hierarchies.

One of the most ambitious intelligent systems research was the Japanese project “Fifth
Generation” in 1981. Prolog was selected as a base language. This project funded with 1981

big budget JPY50 billion ended in 1992 without any commercial success except some
spin-offs (e.g. KLIC).

Minsky and Papert’s Perceptron paper in 1969 caused 17 years of disinterest in neural
networks. They returned to the scene in 1986. A back-propagation learning algorithm 1986

from 1969 was reinvented and successfully applied to many learning problems in com-
puter science and psychology.

4In fact Parry passed Turing’s test, because psychiatrists, who were asked, were often unable to say,
whether they communicate with Parry or human paranoiac.

9

3 Historical Background – From Chess Players to Ontologies

Approximately at the same time it showed that a successful expert system demands
more than to buy a reasoning system and fill it with rules. The most serious drawback
of expert systems is that they do not have “common sense”, they don’t know what
they are for, nor limits of their applicability, nor how their recommendations fit into
larger context. If MYCIN were told that a patient who has received a gunshot wound
is bleeding to death, the program would attempt to diagnose a bacterial cause for the
patient’s symptoms.

3.4 The Cyc Project

The problem of expert systems with the “common sense” (CS) can be overcome by a
huge knowledge base. With this idea in mind Douglas Lenat started Cyc (from “ency-
clopedia”), the largest project (experiment) in symbolic Artificial Intelligence, in 19841984

in Microelectronics and Computer Technology Corporation in Texas. The initial budget
was US$ 50 million and the project continues up to these days.

The goal of Cyc is to build up the largest knowledge base containing a substantial
portion of CS for future generation of expert systems. Lenat expects that Cyc needs
about 100 million assertions to start to learn itself from written text.

The “common sense” means all the knowledge humans use in everyday life, including
the simplest information which seems trivial to adult people. The CS include intuitions,
expressions of ordinary language, foundational beliefs, and axioms. The complexity of
the task expressed Terry Winograd, when he remarked “It has long been recognised
that it is much easier to write a program to carry out abstruse formal operations than
to capture the common sense of a dog.”

The Cyc knowledge base is divided into many (currently thousands of) “microthe-
ories”, each of which is essentially a bundle of assertions that share a common set of
assumptions; some microtheories are focused on a particular domain of knowledge, a
particular level of detail, a particular interval in time, etc.

The information is so far entered by “cyclists” manually, by reading newspapers and
magazines, encyclopaedias, advertisements etc. especially looking for background knowl-
edge assumed to be known to readers. Lenat has predicted that in the early years of
the new millennium, Cyc will become “a system with human-level breadth and depth of
knowledge”.

At the present time, the Cyc knowledge base contains nearly two hundred thousand
terms and several dozen hand-entered assertions about/involving each term. They are
formulated in the language CycL, which is based on predicate calculus and has a syntax
similar to the Lisp programming language.

A part of the Cyc project is publicly available under LGPL (open source) license as
OpenCyc.

10

3.5 Raise of Internet

Figure 3.4: CERN, Tim Berners-Lee: figure from WWW proposal

3.5 Raise of Internet

A big challenge to AI is amount of information available on the Internet. For example
text mining became an important part of AI research. Finding of particular piece of
information in huge amount of text makes it possible to effectively use Internet.

The first packet network ARPANET was constructed in order to build a military
research network that could survive a nuclear strike by Defense Advanced Research
Project Agency (DARPA) in late 60s. It interconnected four nodes (universities) and
nobody expected the boom with exponential growth to nowadays hundreds of millions
hosts.

An important step in practical use of interconnected computers was introduction of
WWW – World Wide Web by Tim Berners-Lee from CERN in 1989 (see figure 3.4). 1989

The enormous amount of information today publicly available on the Internet allowed
the automatic crawling and gaining knowledge from the text. Unfortunately the auto-
matic processing is dependent on natural text understanding, which is not yet at the
level allowing its practical use.

A solution to the text understanding problem could be a semantic description of
the content of the pages by authors, declaring meaning and context of whole page or
pieces of the text. Unfortunately, currently the case with HTML shows, that in most
cases authors are not enough educated and irresponsible and produce invalid code (not

11

3 Historical Background – From Chess Players to Ontologies

following the standard), although they can at least use automatic validators. There must
be some motivation, some advantage of generating a valid structure and an investment
of an extra effort to markup text.

Success in web search engines can serve as a motivation to produce valid pages with
markup, mainly in Google. Authors spend an important part of the design of the whole
web site and page authoring by searching the right keywords to succeed in the Google
search engine. The goal is to be highly ranked and the pages should appear at the first
places in the search result, where are easily found by customers.

This kind of motivation could help automatic crawlers – if they process only valid pages
and use meta-information, authors will be more precise and supply a correct semantic
tags.

There is one more aspect – web services as a part of a business to business communi-
cation. This business area becomes more and more important and the whole industry,
including web auctions, markets, marts etc. become quickly dependent on publicly
available web services. Many providers will offer various services and an application
development becomes a service integration – just combine available services and data
transformation.

The whole evolution shows, that everything available through web should be accom-
panied with semantic information, what it is and how it can interact with other things.

This is the very basic idea of the Semantic Web.

3.5.1 Searching on the Internet

The rapid growth of Internet quickly caused a necessity of a universal search service. It
was not possible to keep overview over all servers and their content.

A support for searching is included into the HTML standard, one of the cornerstones
of the Internet, by its meta-information. The tag intended for searching is the keywords
meta-tag: <META name="keywords" content="list,of,keywords">.

As most of the pages on the Internet have no keywords attached, searching by keywords
is impossible, degrading the original idea.

Processing of the content of web pages became the crucial task for search engines. In
the middle 90s a group of web services appeared (e.g. Yahoo! since 1994, Altavista,1994
Seznam). They looked for pages containing exactly the given words. For successful
query it is necessary to enter the words punctually. They primarily process the text of
the web pages as an unstructured information and rank only numbers of words found in
the page. They do not try to understand the content in any way.

This approach is weak in several ways – first it is impractical for languages using
many forms of one word to express e.g. tenses. This problem is addressed by national
companies in corresponding countries. For example jyxo.cz is able to search all forms
of the given words.

A way how to find more results, is a use of synonyma.

The biggest problem users currently face, it is the need to use the right keywords
witch appear on the searched page. If the query contains general words, the amount of

12

3.6 Semantic Web

results is enormous; if the query is too specific, there are no pages found. In both cases,
the answers is unusable.

In this situation there can be ontologies employed, allowing a change of a generality
of the given words. The pages will be searched in a more human way, by “meaning”
of the query. Such access can be seen as an attempt to “understand” the text of the
indexed pages.

3.5.2 Google

Google is probably the biggest phenomenon nowadays in web searching. Most of the
English speaking Internet users search by the Google and it gives the most valuable
results.

Google, a start-up dedicated to providing the best search experience on the web, was
founded in September 1998 by Larry Page and Sergey Brin, building on three years of 1998
research as computer science Ph.D. candidates at Stanford University. Traffic of their
experimental search engine has been growing at a rate of 50 % per month since Google’s
inception. In June 7, 1999 Google announced it has received a $25 million in equity
funding.

The Company’s name is derived from “Googol,” number 1 followed by 100 zeros,
and reflects the immense amount of information available on the Internet. Google’s
mission is to organise the world’s information, making it universally accessible and useful.
Currently (end of 2004) Google indexes approximately 8 billion pages.

Unfortunately, as Google is a commercial company, their algorithms and use of on-
tologies is not clear (or at least not credible enough). More than on consistent usage of
ontologies, Google rather relies on statistics and a set of heuristics called PageRank, a
patent-pending, measure of the importance of web pages.

As an example of a search web already employing ontologies (although not so famous)
can be mentioned www.clusty.com, offering limited search to specific areas, called clus-
ters. Another attempt is www.hotbot.com.

3.6 Semantic Web

A similar idea to the Cyc one is the idea of a semantic web. It is more concentrated
on the content of web pages than expert systems – it allows software agents to find the
required information and perform simple actions like ordering some goods.

The basic idea of the semantic web has been expressed in article The Semantic Web
by Tim Berners-Lee, James Hendler and Ora Lassila in 2001: “A new form of Web 2001
content that is meaningful to computers will unleash a revolution of new possibilities.”
[6]

Machines cannot understand and interpret the meaning of the information in natural
language – in which is most information on the web today. For the semantic web the
information must be in a precise, machine-interpretable form.

13

3 Historical Background – From Chess Players to Ontologies

Internet in the future should be used by Semantic Web agents automatically pro-
cessing shared data. They are going to lookup services available, help searching the
requested information or even interoperate between home electronic appliances. In the
business domain, the semantic software will be able to integrate services smoothly.

The semantic web is mentioned in more detail in section 4.1.1 for it is crucial for the
ontology development in the latest years.

Techniques used for semantic web agent communication are studied by the discipline
of AI known as multiagent systems (MAS). Agents in MAS can acquire their own private
knowledge, which has to be later shared with other agents. To be able to communicate,
agents share common dictionary/ontology, which provides a common language together
with basic knowledge in the agent community.

14

4 Ontologies

Ontologies are used in computer science for establishing a common, precisely expressed
knowledge, which provides a platform for communication among a group of either people
or computers. The form of the representation had various forms during history and also
today there is a wide range of different approaches to this problem.

4.1 History of Ontologies

The problem how to explicitly represent knowledge was first addressed by philosophers.
The further text concentrates on the evolution of the structures designated for knowl-
edge representation, especially hierarchies of concepts. Other issues like reasoning are
considered to be out of the scope of this text.

In the 5th century B.C. Socrates discussed a proper definition of fundamental sub-
jects like Truth, Beauty, Virtue, and Justice – as a result, Socrates himself professed his
ignorance. His student Plato established the subject of epistemology, the branch of phi-
losophy that deals with the nature, origin and scope of knowledge; he defined knowledge
as justified true belief.

Plato’s student Aristotle (428 B.C.) concentrated on a more practical problem of
knowledge representation. He started with constitution of terminology in many areas –
logic, physics, biology, psychology, politics, ethics, economics, and others. These terms
are used up to today, e.g. category, quality, quantity, metaphor, hypothesis, and many
others. Figure 4.1 shows Aristotle’s ten basic categories (shown at the leaves).

The first graphical notation with representation of knowledge – today known as a
semantic network – appeared in the thirteen century in a book On Aristotle’s Categories
by the philosopher Ramon Lull. Figure 4.2 has been lent from [45].

Figure 4.1: Aristotle’s ten basic categories (in leaves)

15

4 Ontologies

Figure 4.2: Conceptual graph from 13th century by Ramon Lull

Wilhelm Leibniz (1646–1716) wanted to establish mathematical foundation of mental
processes. He assigned prime numbers to primitive concepts and multiplied them to
derive composite concepts. This formalism is able to express only conjunction, Leibniz
never found a way how to represent all the rules of inference and logical operators.

Ontologies, even in their simple form, were used long before artificial intelligence
appeared. A simple form of ontology – taxonomy – has been used by Swedish scientist
Carl Linnaeus (1707–1778, later Carl von Linné) for classification of plants (see figure
4.3). The Linnaean taxonomy is a base for taxonomies used by biologists today. It
classifies living things within a hierarchy.

In 1956 Richard H. Richens of the Cambridge Language Research Unit defined “seman-
tic nets” for machine translation of natural languages. Ross Quillian’s introduced in his
Ph.D. thesis (1968) a term “semantic network” as a way of talking about the organisation
of human semantic memory, or memory for word concepts. The network has a form of a
map with points or nodes representing individual concepts and labelled links. The links
express semantic types is-a, instance-of, part-of or general (user) semantics. Examples
of semantic networks can be found in section 4.1.1, e.g. figure 4.5. Semantic networks
are still used for example in Wordnet (http://www.cogsci.princeton.edu/~wn/) for
representing synonyms, antonyms, hyponyms, and meronyms. Also wikipedia.org, which
is often referenced in this work, is based on semantic networks.

Marvin Minsky proposed frames to represent facts and structure of some object as
a record in [33] in 19751. The usage of frames were demonstrated on spatial imagery

1There are three references to this article – in years 1974, 1975, and 1981. In fact, the article appeared

16

4.1 History of Ontologies

(a) Carl von Linné (b) Systema naturae

Figure 4.3: Linnaean taxonomy

and linguistic understanding. Frames are defined as data structures for representing a
stereotyped situation. Frames are organised into network of nodes and relations, where
“top levels” are fixed, represent things that are always true about the supposed situation.
The lower levels have many terminals – slots that must be filled by specific instances
or data. Together with the slots there can be defined conditions an assignment must
meet; they can require a terminal assignment to be of a particular type or an object of
sufficient value; more complex conditions can specify relations among the things assigned
to several terminals. Facets were later added to express more detailed description of a
slot (default values, restrictions, etc.).

Description logics (DL, previously called terminological logics) started with a moti-
vation of providing a formal foundation for semantic networks. The first DL implemen-
tation KL-ONE grew out of Ron Brachman’s thesis in 1977. In 1983, Ron Brachman
introduced T-box for defining terms and A-box for making assertions. Using prime in-
tegers for T-boxes and Leibniz’s products for inheritance (a subclass of two classes is
represented by a product of the two corresponding numbers) introduces lattice. Lattice
is still used in many knowledge-management applications (e.g. FCA).

Around 1990 there were several implementation based on description logics – LOOM
(KL-ONE style system, MacGregor, 1987), Classic (Bogida, 1989), Kris (Baader, 1991),
etc. On the basis of description logics were built languages targeted to the semantic

three times: first, as an MIT-AI Laboratory Memo 306 in June, 1974, later in The Psychology

of Computer Vision, P. Winston (Ed.), McGraw-Hill in 1975, shorter version in J. Haugeland, Ed.,
Mind Design, MIT Press, 1981, and for the last time in Cognitive Science, Collins, Allan and Edward
E. Smith (eds.) Morgan-Kaufmann, 1992.

17

4 Ontologies

Figure 4.4: Conceptual graph: Tom believes [Mary wants [to marry a sailor]]

web; they are described in the next section (RDF in 1997 and others).
John F. Sowa’s conceptual graphs are examples of a visual notation for predicate

calculus [46]. Conceptual graph is an extension to C. S. Pierce’s2 existential graph
with features adopted from AI and linguistics. An example of a conceptual graph is in
figure 4.4. The figure represents a sentence Tom believes [Mary wants [to marry a

sailor]].
In the last decade, the emergence of large amount computers joined in one huge

network allowed efficient cooperation of software agents searching a particular piece of
information or a service. Such agents have to apply their own model of world describing
terms used by sources accessed. This plan leads to the semantic web, presented in the
next section.

4.1.1 Semantic Web

The first ideas, how interconnected computers should effectively manage information,
provided Tim Berners-Lee in the original proposal of the WWW in 1989.3 He discussed
problems of loss of information about complex systems in CERN and suggested a solution
based on a distributed hypertext system. The solution to this problem was HyperText
Markup Language (HTML).

The HTML language became accepted as a language for World Wide Web. As the
number of documents is extremely large and continues to grow rapidly, there is a necessity
of a precise search with relevant answers. It requires a classification of the content
comprehensible to machines. HTML did not provide a way how to semantically markup
the content. A promising way how to impose an understanding of the content of the
web by computers is the idea of a semantic web. The content of the web pages will be
described in terms of standardised ontologies and thus any search engine will be able to
find a relevant information.

Early attempts to use metadata to add and extract meaning to the web page appeared

2Because of the nature of the writings of Pierce (1839–1914) most of his work was never published
during his lifetime, although much of it is available in collected volumes – e.g. 8 volumes “The
collected papers of Charles Sanders Pierce,” Harvard University Press, 1931–1958.

3source: http://www.w3.org/History/1989/proposal.html

18

4.1 History of Ontologies

Figure 4.5: Semantic web: superimposed semantic networks from multiple descriptions

in 1993 in the HTML draft 1.2 in element link (pointer from this document to another
one) with attributes rel (describing a type of the link) and rev (reverse – how the target
document relates to the current one). Because there were no advantages of using this
element, no pages were marked by it.

Another attempt was Simple HTML Ontology Extensions (SHOE) in 1995, trying to
add ontology into web page, which was never widely used.

As a formalism for adding semantics to the page was later chosen the Resource De-
scription Format (RDF) with its extension RDF Schema (RDFS). It allowed to relate
any Uniform Resource Identifier (URI) with any other URI or literal. In the Decem-
ber 2000, Tim Berners-Lee presented the idea of the semantic web4 – the early layered
schema is in figure 4.6. The main role had to play the layer RDF+RDFS using RDFS
formalism with its “very wide interoperability”. For all the layers were presented existing
technologies able to serve the tasks of the layer.

Using RDFS as a formalism for Ontology vocabulary led to problems, because the
RDFS standard is too general (weakly defined) to be reasonably processed. Instead of
using the RDFS formalism as the only language, it was quickly replaced by its successors.

The substitution of the RDFS layer in the schema should be understood as a challenge
to define a method, how to migrate ontologies written in different formalisms. Single
layers then could be developed independently and composed according to needs of an
application.

The first formalism widely used for developing ontologies for the semantic web was
DARPA Agent Markup Language (DAML). The DAML Program formally began with
a kickoff meeting in August 2000 in Boston. In December the same year it joined with
European project OIL, which added some procedural features (restriction on properties,
set operations). The Defense Advanced Research Projects Agency in the February 2004
announced that the World Wide Web Consortium approved DAML as an international
standard.

4source: http://www.w3.org/2000/Talks/1206-xml2k-tbl/slide1-0.html

19

4 Ontologies

Figure 4.6: Architecture of Semantic web from December 2000

Web-Ontology (WebOnt) Working Group proposed a new language Web Ontology
Language (OWL) based on DAML+OIL. The working group consists of 51 commercial
and public sector organisations, research projects/labs, and invited experts. The goal
of the languages were shared ontologies, ontology evolution, ontology interoperability,
inconsistency detection, balance of expressivity and scalability, ease of use, XML syntax,
and internationalisation.

All the formalisms based on RDF are used up to today. The RDFS is a base for
the RSS channels, providing simple information about new article on information webs.
DAML serves as a formalism for the biggest repository of ready-to-use ontologies at
daml.org. OWL is the newest one and it is chosen for new projects, it seems that in
the future ontologies will converge to OWL.

The standards connected with the semantic web idea are currently covered by the W3C
World Wide Web Consortium with their motto: Leading the Web to Its Full Potential. . .

4.2 Current Definitions of Ontology

The term ontology itself has several definitions, which are mutually incompatible. Orig-
inally the term came from philosophy. In the computer science, especially in knowledge
management the term ontology was used for a structure representing knowledge of a
system about the world around.

Wikipedia (http://en.wikipedia.org/wiki/Ontology) In philosophy, ontology, is the
most fundamental branch of metaphysics. It is the study of being or existence as
well as the basic categories thereof. It has strong implications for the conceptions
of reality.

20

4.3 Formal Definitions

Webster’s Revised Unabridged Dictionary (1913) That department of the science of
metaphysics which investigates and explains the nature and essential properties
and relations of all beings, as such, or the principles and causes of being.

WordNet (r) 2.0 n : the metaphysical study of the nature of being and existence

In computer science, this word got a different sense. Its most important role is to
provide a common set of concepts for information interchange:

Gruber, 1996, [16] An ontology is a explicit specification of a conceptualisation.

Borst, 1997, [7] An ontology is a formal specification of a shared conceptualisation.

Sowa, 2000, [45] Ontology defines the kinds of things that exist in the application
domain.

Wikipedia, 2004
http://en.wikipedia.org/wiki/Ontology_%28computer_science%29

In computer science, an ontology is the attempt to formulate an exhaustive and
rigorous conceptual schema within a given domain, a typically hierarchical data
structure containing all the relevant entities and their relationships and rules (the-
orems, regulations) within that domain. The computer science usage of the term
ontology is derived from the much older usage of the term in philosophy, where it
means the study of being or existence as well as the basic categories thereof. See
ontology (philosophy).

The difference between the Gruber’s and later Borst’s definitions is in the requirement
of using a formal language for expression of the specification. It can be shown on the
case of the CRM ontology – it is written as a text without any formal definition and
thus conforms to the Gruber’s definition, but not the Borst’s.

The definitions provided restrict the domain of ontology research in knowledge repre-
sentation in contrast to the philosophical “study of being”. They are general enough to
allow wide range of variants, requiring only presence of concepts. They do not anticipate
any particular features the form should have.

There exist multiple formalisms following those definitions, but different in their ca-
pabilities. In order to find a common platform allowing mutual translation between
ontologies and their formalisms, there is necessary to introduce a more formal defini-
tion. Such definition is provided in the next chapter.

4.3 Formal Definitions

For the investigation of transformations there is a need of an exact mathematical defi-
nition of the term ontology. The definition decreases the level of abstraction of the term
and allows us to draw conclusions about ontology transformations. Together with the
definition of ontology there is presented a definition of an ontology formalism.

21

4 Ontologies

The terms used for definitions will be demonstrated in section 4.3.3 from the simplest
formalisms to more complex. Descriptions of formalisms in section 4.4 contain definitions
of real-life formalisms.

4.3.1 Concepts and Relations

Concept is every object in the domain of discourse, either abstract or generic idea gen-
eralised from particular instances. Concepts in the further text will be used as a basis
for developing other definitions. It will be represented by a unique literal.

A set of concepts will be denoted C. In the ontology in figure 4.1 all names of classes
are concepts.

To connect concepts into structures, n-ary relations will be used. A relation in
this case is denoted by an n-ary predicate (a truth-valued function of n variables)
rel(x1, x2, . . . , xn), where x1, x2, . . . , xn ∈ C. In the following text we use the abbreviation
Relation/n to express a set of relations with n arguments (for example SubclassOf/2):

Definition 4.1 (Relation with arity n).

Rel/n ⊆ C
n

rel(x1, x2, . . . , xn) ⇔ 〈x1, x2, . . . , xn〉 ∈ Rel/n.

A set of all relations will be denoted R. For example, the labels in figure 4.5 belong
to the R set.

An example of usage of the shortcut is a definition of a subclassOf relation:

SubclassOf/2 = {subclassOf(x1, x2)| x1, x2 ∈ Concepts}

All ontology formalisms, except the trivial ones, define restrictions. To define restric-
tion, there is needed definition of a transitive closure of a binary relation:

Definition 4.2 (Transitive closure R∗ of a binary relation R). The transitive
closure R∗ of a relation R is defined by

xRy ⇒ xR∗y

xRy ∧ yR∗z ⇒ xR∗z

I.e. elements are related by R∗ if they are related by R directly or through some sequence
of intermediate related elements.

4.3.2 Ontology and Ontology Formalism

Basically, ontology content can be divided into two basic parts: structural and proce-
dural. The structural part is addressed far more often, for example by the Gruber’s
definition (explicit specification of conceptualisation, [17], chapter 4.2). We further di-
vide the structural part into a set of concepts and a set of relations between the concepts.
The procedural part consists of restrictions and actions.

22

4.3 Formal Definitions

Formal language definition Ontology definition
symbol concept
alphabet (finite set of symbols) set of used concepts, C

string (finite sequence of symbols) ontology, Ω
language (set of strings) ontology formalism F

grammar (V, T, P, S) ontology grammar Ψ
language generated by grammer L(G) formalism generated by grammar F(Ψ)

Table 4.1: Comparison of a formal language and ontology definitions

The definition of ontology in this work was inspired by a common definition of a formal
language. Definition terms are compared in the table 4.1. Newly introduced terms are
emphasised.

Every formalism works with a limited set of terms, which it uses. For example, the
most common term is a “class.” Others terms involve property or slot, value, string etc.
A set of all these terms for a particular formalism will be denoted CF.

Very similarly, every formalism defines a set of relations (like is-subclass-of); it will
be denoted RF.

Ontology formalisms are often designed in a context of some language. It can be either
a common programming language (often Lisp) or a new special language (OIL). This
language is then used to restrict relations between concepts or to express actions to be
performed in some situation. Languages will be further denoted by a bold mathematical
font: SS and AS.

With these typographic conventions the ontology grammar can be defined:

Definition 4.3 (Ontology grammar). Ontology grammar is a 5-tuple:

Ψ = (CF, RF, SF, SF, AF)

where

• CF is a set of formalism concepts,

• RF is a set of formalism relations,

• SF is a set of structural restrictions on relations between ontology concepts,

• SF is a language to specify additional restrictions applicable in the formalism, and

• AF is a language to specify actions allowed in the formalism.

The definition of the ontology grammar clearly separates the structural part – CF, RF,
and SF from the procedural part – SF and AS.

The structural part will be the subject to transformation between ontologies in the
next chapter.

23

4 Ontologies

The procedural part consists of two languages, which in many cases have power of
the Turing Machine. It is well-known fact, that it is not possible to find a conversion
between two general languages ([27], chapter 7.3).

Simple examples of grammars will be given in section 4.3.3. More complex examples
will be given in sections describing formalisms OCML (section 4.5.4) and formalisms
based on description logics (section 4.6).

Now, ontology and formalism can be defined:

Definition 4.4 (Ontology Ω).

Ω = (C, R, φC, φR, S, A)

where

• C is a set of concepts (concept is represented by a literal),

• R is a set of relations between concepts,

• φC is a function φC : C → CF,

• φR is a function φR : R → RF,

• S is a set of restrictions, and

• A is set of actions.

Definition 4.5 (Formalism). A formalism is a set of ontologies with common sets of
formalism concepts CF and relations RF.

Although there can exist a formalism not covered by any ontology grammar, we will
mention only formalisms generated by grammars. Grammars can generate any formalism
using concepts. The part of knowledge not expressible using concepts is known as tacit
there exist no means how to express it.

These definitions will be applied to the formalisms analysed for the transformation
purpose.

A relation ≺ required for a lattice of formalism definitions will be defined tn the
following text. The ≺ relation plays a similar role for formalism grammars as ⊂ for sets.

Definition 4.6 (Formalism grammar ≺ relation). Two formalism grammars Ψ1 =
(CF1, RF1, SF1, SF1, AF1) and Ψ2 = (CF2, RF2, SF2, SF2, AF2) are in ≺ relation, if one can
be fully described using constructs of the other, i.e. there exist injective functions between
the pieces of the grammars:

Ψ1 ≺ Ψ2 if ∃φc : CF1 → CF2 ∧

∃φr : RF1 → RF2 ∧

∃φs : SF1 → SF2 ∧

∃φS : SF1 → SF2 ∧

∃φA : AF1 → AF2

24

4.3 Formal Definitions

Definition 4.7 (General and specific grammar). For two formalism grammars
Ψ1 = (CF1, RF1, SF1, SF1, AF1) and Ψ2 = (CF2, RF2, SF2, SF2, AF2):

– the general formalism grammar is
Ψ1∪2 = (CF1 ∪ CF2, RF1 ∪ RF2, SF1 ∩ SF2, SF1 ∩ SF2, AF1 ∪ AF2) and

– the specific formalism grammar is
Ψ1∩2 = (CF1 ∩ CF2, RF1 ∩ RF2, SF1 ∪ SF2, SF1 ∪ SF2, AF1 ∩ AF2)

Then we can say Ψ1∩2 ≺ Ψ1 ≺ Ψ1∪2.

Theorem 4.1 (Formalism grammar lattice). A set of formalism grammars and ≺
relation over grammars form a lattice:

The least upper bound (>) is Ψ0 = ({}, {}, {}, {}, {}).
The greatest lower bound (⊥) is Ψ∞ – grammar generating all possible ontologies.

Theorem 4.2 (Formalism ≺ relation). Two formalisms are in ≺ relation if their
grammars are in the ≺ relation:

F1 ≺ F2 iff Ψ1 ≺ Ψ2

Theorem 4.3 (Formalism lattice). A set of formalisms and ≺ relation over for-
malisms form a lattice:

The least upper bound (>) is F(Ψ0).
The greatest lower bound (⊥) is F(Ψ∞).

4.3.3 Simple Formalisms

Let us start with some definitions of simple formalisms – empty ontology and a set of
concepts (minimal ontology). Both of these formalisms are subsets of all the further
formalisms:

Ψ0 = ({}, {}, {}, {}, {}) (4.1)

Ψset = ({item}, {}, {}, {}, {}) (4.2)

Ψtaxonomy = ({concept}, {Is-a/2}, {concept is-a concept}, {¬(x is-a∗ x)}, {}) (4.3)

Taxonomy is the second simplest case of conceptualisation. Its corresponding oriented
graph is a forrest. For this purpose, a necessity of the root (>) is omitted to allow
multiple top-level concepts: The rule ¬(x subclassOf ∗ x) means, that there are no cycles
in the corresponding oriented graphs (where concepts are vertices and relations are
edges).

Very similar to taxonomy is a lattice. In addition to the taxonomy, lattice has top
(>) and bottom (⊥) symbols:

Ψlattice = ({concept,>,⊥}, {Is-a/2}, (4.4)

{concept is-a concept, concept is-a>,⊥ is-a concept}, {¬(x is-a∗ x)}, {})

25

4 Ontologies

In the taxonomy (and lattice) formalism, the SF set was used for the first time. It
defines, how relations and classes can be used: {concept is-a concept, concept is-a>,⊥
is-a concept} means, that the is-a relation can have concept as both left and right
argument, but > only as its left and ⊥ as its left argument.

An advantage of the lattice formalism is its simplicity. Lattice can be automatically
generated, e.g. by the Formal Concept Analysis (FCA), [41].

The most simple formalisms can be easily compared:

Ψ0 ≺ Ψset ≺ Ψtaxonomy ≺ Ψlattice. (4.5)

As an example of a complex language, a part of OCML definition is provided here.
The full definition will be specified in section 4.5.4 dedicated to the OCML formalism:

ΨOCML = ({class, instance, slot, literal, assignment, . . . }

{subclassOf/2, hasSlot/2, assignment/3, . . .}, (4.6)

{Slot-type-validations, . . . },

User-Defined-Restrictions, Actions)

Similar definitions can be provided also for description logic based formalisms, topic
maps, ER diagrams, and even for non-ontology formalisms like Java classes hierarchy,
bookmarks, or filesystem. Selected formalisms will be examined in section 4.4 including
formal specifications.

4.3.4 Running Example

In the further text there will be reviewed several formalisms available. Some of them
will be investigated further and for them there will be given examples.

In order to emphasise differences between the ontologies, there will be given an exam-
ple. Here, the example domain will be defined in English first:

There exist two kinds of humans: a man and a women. Each human has
parents – mother and father.

There are two particular people – Adam and Eve, and they have two sons:
Abel and Cain.

A part of the formalisms presented in this chapter are based on logic, so the folowing
piece of code represents the same knowledge in Prolog:

human(X) :- man(X).

human(X) :- woman(X).

man(Adam). man(Abel). man(Cain).

woman(Eve).

hasfather(Abel, Adam). hasfather(Cain, Adam).

hasmother(Abel, Eve). hasmother(Cain, Eve).

26

4.3 Formal Definitions

PSfrag replacements
is-ais-a

is-a
is-a

is-a
is-a

human

man woman

Adam EveCainAbel

Figure 4.7: Running example as a taxonomy

PSfrag replacements

is-a
human

man
woman
Adam

Eve
Cain
Abel

has-father
has-mother

Figure 4.8: Running example in a semantic network

27

4 Ontologies

4.4 Overview of Formalisms

Before any transformation can be designed, the existing formalisms must be analysed. In
the following sections set of formalisms will be shown and commented. Only formalisms
usable for expressing ontology and thus interesting for ontology formalism transformation
are chosen. Another overview with usage of formalisms is in [40] and [50].

Nowadays the usage of formalisms is split to two areas – artificial intelligence or
knowledge management (especially with reasoners) and web description. The former
area tends to use formalisms based on Lisp, while the other later uses formalisms rather
based on RDF.

An example of Lisp-based ontology formalism is the OCML. It is used as a primary
output of the Apollo editor, see sections 4.5.4 and 4.9.1.

On internet, the most frequently practically used formalism is RDF, e.g. RDF channels
(used as a short description of recently published articles on some websites). These
descriptions can be easily downloaded from multiple websites and offered to the user
as an overview of currently available articles. However the RDF channels currently
provide no information about classification of the content of the article. For that kind
of description it is necessary to use a more “ontological” language. Such languages
are RDFS and its successor OWL. These languages are able to describe the content in
categorised terms.

Although RDFS and OWL are preferred by web-centric communities, these formalisms
have their drawbacks. Their design does not follow conventions established in knowledge
management community (e. g. they define no meta level – metaclasses for definition of
classes; OWL DL tries to solve some of these issues).

There exist other formalisms with their own advantages and special features. These
formalisms are targeted to specific domains like large taxonomies categorising Web
sites, product catalogues, large information systems, domain knowledge in fields such as
medicine or multiagent systems. An example of a special feature are microtheories intro-
duced in Cyc. Microtheories attempt to follow the real world, where there exist multiple
points of view and not just one general theory covering the whole human knowledge.

There are two basic foundations of ontology formalisms – logics and frames. Both
are closely related, but in the frame-based systems a structure of terms is emphasised,
while logics-based systems stress use of inference. Therefore the formalisms description
is divided into two separated sections.

The table 4.2 shows a list of formalisms considered to be a subject of transformation
presented in this work.

4.5 Frame-Based

Minsky’s so called “frames paper” [33] presented frames as a knowledge representation
schema. It extended object-oriented programming technique, introduced by O. J. Dahn
and K. Nygaard in their programming language SIMULA 67 in 1967. In this language
were for the first time used both objects and classes, subclasses (usually referred to as
inheritance).

28

4.5 Frame-Based

Formalism Year Reference
Conceptual Graphs 1983 John F. Sowa, http://www.jfsowa.com/cg
KIF 1992 Genesereth and Fikes, [29]
Ontolingua 1992 T. R. Gruber, [16]
OCML 1995 E. Motta, [36]
Topic Maps 1991 http://topicmaps.it.bond.edu.au/

OKBC 1998 Chaudhri et. al, http://www.ai.sri.com/~okbc/
XOL 1999 http://www.ai.sri.com/pkarp/xol/

RDF 1997 www.w3.org/RDF/

RDF-S 2000 www.w3.org/TR/rdf-schema/

DAML 10/2000 www.daml.org

OIL http://www.ontoknowledge.org/oil/

DAML+OIL 11/2001 http://www.ontoknowledge.org/oil/

OWL 07/2002 http://www.w3.org/2001/sw/WebOnt/

Table 4.2: Ontology Formats

In frame-based systems information is stored in frames, which consist of slots, describ-
ing the object. Particular values are assigned to the slots.

A slots consists of a set of facets. A value of the slot is one of the facets, other facets
can contain default values or so called daemons. These daemons represent procedural
information in frames. They can serve as value-checkers or general procedures. The
daemons are used in a predefined situations like when is the slot value filled, changed or
cleared. In this approach the range of slot (type) is checked by a corresponding daemon.

Frames become very popular thanks to their similarity to the object programming,
which dominates computer design in last decade and thanks to easy mapping to the
first-order logics.

There exist numerous ontology formalisms based on frames.

4.5.1 Conceptual Graphs

Ontology formalisms are not used only for building hierarchies of terms, but can keep
information about particular objects and their interrelations. For example, conceptual
graphs (CGs) are a system of logic based on the existential graphs of Charles Sanders
Pierce and the semantic networks of artificial intelligence. They express meaning in a
form that is logically precise, humanly readable, and computationally tractable. The
CGs concentrate on the natural language processing and understandability to humans.
An example of CG was shown in the introduction in figure 4.4.

4.5.2 KIF

Knowledge Interchange Format (KIF, [29]) defines itself as a communication format
for interchange of knowledge among disparate computer systems written in different

29

4 Ontologies

Figure 4.9: Running example in a conceptual graph

programming languages. The stress on a programmer-readable language facilitates the
development of independent knowledge-manipulation programs. KIF is an extended
version to the first-order predicate calculus and its syntax is based on LISP.

SUO-KIF

For the SUMO upper ontology (see section 4.10.4) a SUO-KIF language has been de-
veloped as a KIF extension. Here it will server as an example of usage of KIF. Here is
a piece of the SUMO knowledge base:

(instance economyType BinaryPredicate)

(domain economyType 1 Agent) ;GeopoliticalArea or GovernmentOrganization

(domain economyType 2 EconomicAttribute)

(subrelation economyType attribute)

(documentation economyType "(&%economyType ?POLITY ?TYPE) means that the

&%GeopoliticalArea ?POLITY has an economic system of &%TYPE.")

(=>

(economyType ?AGENT ?ATTRIBUTE)

(or

(instance ?AGENT GeopoliticalArea)

(instance ?AGENT Organization)))

(=>

(attribute ?AREA FormerSovietOrEasternEuropeanCountry)

(economyType ?AREA CountryInTransition))

(economyType CzechRepublic CountryInTransition)

30

4.5 Frame-Based

4.5.3 Ontolingua

Ontolingua [16] has been developed in 1993 as a system for describing ontologies in a
form compatible with multiple representation languages. It provides forms for defining
classes, relations, functions, objects, and theories. Ontolingua syntax and semantics are
based on KIF.

A part of Ontolingua, so called Frame Ontology, defines a set of idioms that the
system can recognise. The Frame Ontology contains second-order relations – a complete
axiomatisation of classes and instances, slots and slot constraints, class and relation
specialisation, relation inverses, relation composition, and class partitions.

The following example shows the running example in Ontolingua. There is also shown
Ontolingua’s ability to separate ontologies to parts using in-theory.

(in-theory ’FIRST-HUMANS)

(define-class HUMAN (?body))

(define-class MAN (?body)

:def (human ?body))

(define-class WOMAN (?body)

:def (human ?body))

(define-relation FATHER (?parent ?child)

:def (and (man ?parent)

(human ?child)))

(define-relation MOTHER (?parent ?child)

:def (and (woman ?parent)

(human ?child)))

(define-instance ADAM (man)

"The first people created by God"

:slots

((father ABEL)

(father CAIN)))

(define-instance EVE (woman)

"First woman"

:slots ((mother ABEL)

(mother CAIN)))

(define-instance CAIN (man))

(define-instance ABEL (man))

An exact definition of Ontolingua (and formalisms based on LISP) is complicated by
its parts written in LISP without any formalisation. The following example is from
sample ontology:5

5source: http://www-ksl.stanford.edu/knowledge-sharing/ontologies/html/mace-domain/

mace-domain.lisp.html

31

4 Ontologies

(define-instance GIMBAL-2-BASE (mechanical-component)

:axiom-def (and (subcomponent-of GIMBAL-2-BASE GIMBAL-2)

(= (orientation (reference-frame GIMBAL-2-BASE)

(reference-frame PLANAR-MACE))

(simple-rotation 3 180))

(= (position (reference-point GIMBAL-2-BASE)

(reference-point PLANAR-MACE))

(* (- (buslength BUS-ASSY))

(basis.vec (reference-frame PLANAR-MACE) 1))))

)

The :axiom-def part of the definition uses LISP syntax and only patterns can be
searched in order to acquire a structure of classes/instances. These feature prohibits
using LISP-based formalisms in modern application, often using Java or C++ and thus
unable to evaluate LISP expressions.

4.5.4 OCML

Operational Conceptual Modelling Language (OCML) was inspired by Ontolingua in its
constructs. It adds mainly operational capabilities to ontologies, defines restrictions and
action, which can be executed. An example of use of this feature is the time ontology
in PhD thesis of Kamil Matoušek [28].

The OCML language was developed at the Knowledge Media Institute, The Open
University, UK by E. Motta.

The OCML language was the main platform used in the CIPHER project (see sec-
tion 5.1.1), which formulated aim of this thesis. Its usage allowed to develop an ap-
plication Story Fountain presenting stories with ability to explore relations between its
items. In fact, the Story Fountain is one of the first applications of Semantic Web.

Mechanisms provided by OCML allow expressing classes, instances, relations, func-
tions, and rules (with both backward and forward chaining). OCML also implements
general tell&ask interface as a mechanism for assertion of facts and examination of the
content of a knowledge base.

For efficient reasoning, there are some extra logical mechanisms, such as procedural
attachements. Procedures are pieces of LISP code. A definition of a class or a relation,
it can consists of several parts. The parts :iff-def, :prove-by or constraint are
evaluated during inference in order to cut the searched space. Moreover, there can be
defined a lispfun part, which access internal OCML structures.

Practical results of this thesis use the OCML formalism as a primary output. For
loading of OCML ontology, all the procedural part is not taken into account.

In OCML and similarly in all frame-based formalisms, an assignment (a specific slot
is set to a particular value) is a relation with arity 3, as it connects the definition of the
slot, the instance and the target value. Both the Slot-type-validations and Actions are
Lisp functions connected to an event (assignment of a slot value and adding a new fact).

32

4.5 Frame-Based

ΨOCML = ({class, instance, slot, literal, assignment, relation}, (4.7)

{SubclassOf/2, HasSlot/2, Assignment/3, T ypeOf/2, SlotType/2},

{class subclassOf/2 class, class hasSlot/2 slot,

assignment/3(instance, slot, instance),

assignment/3(instance, slot, literal),

instance typeOf/2 class, slot slotType/2 class},

{Slot-type-validations, . . . }, Actions)

(def-class HUMAN ()

((FATHER-OF :max-cardinality 1

:type MAN)

(MOTHER-OF :max-cardinality 1

:type WOMAN)))

(def-class MAN (HUMAN) ())

(def-class WOMAN (HUMAN) ())

(def-instance ADAM man

((FATHER-OF (ABEL CAIN))))

(def-instance EVE woman

((FATHER-OF (ABEL CAIN))))

(def-instance CAIN man)

(def-instance ABEL man)

Practically, instead of parsing Lisp syntax of OCML, the software implementation in
this thesis used an XML format of editor designed for OCML authoring – ApolloCH.
During its development, there has been added functionality not available in OCML. An
example of such feature is possibility to assing a class into a slot, not only instance or
literal.

In the ApolloCH editor, the procedural part of ontology is not present.
A definition of ApolloCH formalism can be done by a simple extension of the OCML

definition:

ΨApolloCH = (COCML, ROCML, SOCML ∪ {assignment/3(instance, slot, class)}, {}, {})
(4.8)

4.5.5 CycL

The Cyc project was already mentioned in the historical overview in chapter 3.4. Here
will be described the language used for the project – CycL.

CycL is a frame language developed for the Cyc project. An important feature of the
CycL formalism is division of a knowledge base to pieces called microtheories. Every

33

4 Ontologies

(a) Classes (b) Objects/instances

Figure 4.10: Running example in UML

assertion falls within at least one microtheory. The microtheories are used for better scal-
able knowledge base building, better inferencing and to cope with global inconsistency
in knowledge base. At the huge scale the inconsistency is inevitable. Each microthe-
ory is locally consistent. They are also good for handling divergence (different points of
view, scientific theories, changes over time): “Tables are solid” – at a granularity usually
considered by humans, tables are solid.

Microtheories can be dependant due to the #$genlMt inheritance predicate. The
expression (#$genlMt MT-1 MT-2) means that every assertion which is true in MT-2 is
also true in MT-1.

The running example expressed in CycL can be written in microtheory #$AdamEveMt:

(#$genls #$Man #$Human) \;

(#$genls #$Woman #$Human) \;

(#$isa #$Adam #$Man) \;

(#$isa #$Eve #$Woman) \;

(#$relationAllExists #$biologicalMother #$Human #$Man)

(#$relationAllExists #$biologicalMother #$Human #$Woman)

(#$biologicalMother #$Abel #$Eve)

4.5.6 UML, E-R Diagrams

In the computer design Unified Modelling Language (UML) and Entity-Relation (E-R)
diagrams established as the two most commonly used standards.

E-R diagrams are used for design of structure of a relational database and define
tables, attributes and relations between them.

The UML (http://www.uml.org/) allows application specification. Currently it is
the world-leading technology with support of many software companies and many tools
both commercial and free. It consists of several kinds of diagrams modelling different
aspects of the application structure and behaviour.

34

4.6 Description Logics

For this text the structural (class and deployment) diagrams are important. The model
in UML define not only simple parent-child relation, but also inheritance, aggregation,
or composition (only the structure diagrams are important in this context).

UML has defined mapping to the most common languages, mainly Java and C++.
An attempt of a special conversion of OWL ontology into Java source code can be found
in [24].

4.6 Description Logics

Description logics play an important role in forming languages for the semantic web. A
very short introduction to DL helps to understand details about issues of the particular
languages.

Description Logics are a family of knowledge representation formalisms [20]. It repre-
sents information about classes and individuals and their description. It consists of Con-
cepts – unary predicates denoting entities or classes, Roles – binary predicates denoting
properties or relations, Constructors for concept expressions and Individuals denoting
instances of classes.

The logics use various constructors to build complex classes from simpler ones. A
list of the available constructors is in table 4.3. The choice of the set of constructors
determine the expressivity and performance i.e. decidability of reasoning.

Construct Syntax Language

concept A FL−

role name R
conjunction C ∩ D
value restriction ∀R.C
existential quantification ∃R
top > AL∗

bottom ⊥
negation (C) ¬C
disjunction C ∪ D
existential restriction ∃R.C
number restrictions (≤ nR)
collection of individuals {a1, . . . , an}
role hierarchy R ⊆ S H
inverse role R− I
qualified number restriction (≤ nR) Q

Table 4.3: Set of constructors of Description Logics

A key feature of Description Logics is that they are logics, i.e. formal languages with
well defined semantics.

35

4 Ontologies

The purpose of the semantics is to explicate the relationship between the language
syntax and the intended model of the domain. A model consists of a domain (∆I) and
an interpretation function (·I). The domain is a set of objects and the interpretation
function is a mapping from individual, class and property names to elements of the
domain, subsets of the domain and binary relation on the domain. For example, for the
class Human, HumanI ⊆ ∆I, for an individual Adam, AdamI ∈ ∆I, and for the property
fatherOf, fatherOfI ∈ ∆I × ∆I.

Definition 4.8 (Description logic semantics). Let CON = C1, C2, ... be a countable
set of atomic concepts, ROL = R1, R2, ... be a countable set of atomic roles and IND
= a1, a2, ... be a countable set of individuals. For CON, ROL, IND pairwise disjoint,
S = 〈CON, ROL, IND〉 is a signature. Once a signature S is fixed, an interpretation I

for S is a tuple I =
〈

∆I, ·I
〉

, where

• ∆I is a non empty set,

• ·I is a function assigning an element aI
i ∈ ∆I to each constant ai; a subset CI

i ⊆ ∆I

to each atomic concept Ci; and a relation RI
i ⊆ ∆I × ∆I to each atomic role Ri.

Any (basic) Description Logic is a subset of function-free first-order logic using at
most three variable names in a formula. The representation is on the predicate level –
no variables are used in the expressions. The mapping from FOL can be done effectively
using lambda expressions (HUMAN ≡ λ X.HUMAN(X)).

The advantage of Description Logics over FOL is in its more efficient (decidable)
inference procedures. The finer structure of knowledge can guide inference. For the sim-
plest DL language, FL−, which uses only conjunction, value restriction and existential
quantification, it can be shown that reasoning is decidable in polynomial time.

A Description Logic theory is divided in two parts: the conceptual or terminological
knowledge i.e. the definition of predicates (TBox) and the instance assertional knowledge
i.e. assertion over constants (ABox). The reasoning is then done using a “knowledge
base”.

Definition 4.9 (Knowledge base). Fix a description language L, a knowledge base
Σ in L is a pair Σ = 〈T, A〉 such that

• T is the TBox, a finite, possibly empty, set of expressions of the form C1 ⊆ C2

where C1, C2 are in CON(L). Formulas in T are called terminological axioms.

• A is the ABox, a finite, possibly empty, set of expressions of the form a:C or
(a,b):R, where C is in CON(L), R is in ROL(L) and a, b are individuals. For-
mulas in A are called assertions.

An example of a T-Box can be HAS-FATHER = ∃ParentOf.Man and A-Box can be
demonstrated on Man(Adam), Woman(Eve), or FatherOf(Adam, Abel).

Some description logics, such as ALC(D) [5] and SHOQ(D) [21] (DL into which OIL
can be mapped completely) allow attributes to have values from so-called “concrete

36

4.7 Designed for Semantic Web

domains,” which can contain entirely new kinds of values. These concrete domains are
required to have their own, independent reasoners, which are then coupled with the DL
reasoner.

The Description Logics were chosen as a base for ontology formalisms designed for the
Semantic Web. The following section presents a list of formalisms practically used.

4.7 Designed for Semantic Web

A need of annotation of information available on web was described earlier (in sections 3.6
and 4.1.1). For this purposes have been developed numerous formalisms. A hierarchy of
the most important ones is in figure 4.11.

Figure 4.11: Hierarchy of semantic web formalisms

4.7.1 Topic Maps

Topic maps, recent ISO standard (ISO/IEC 13250), was developed by the HyTime
(Hypermedia/Time-based Structuring Language) community. They annotate docu-
ments with conceptual information.

The terms which topic maps use, are topic, association, and occurrences. Topic rep-
resents the same kind of information as concept in this thesis. Topics are instances of
Topic types, which are another topics, i.e. topic maps have no specialised primitive to
distinguish classes and instances. Association expresses relation between topics. Oc-
currences store information, where (e.g. in an annotated text, on web) appears given
topic.

Topic maps are very similar to semantic networks. They add the topic/occurrence
axis to the knowledge base. In the context of this thesis, occurrences are not important
and topic maps can be treated in the same way as semantic networks.

37

4 Ontologies

4.7.2 SHOE

The SHOE (Simple HTML Ontology Extensions) language defines primitives for on-
tology definition on web pages. Web documents written in HTML are enriched by
annotations describing parts of the document.

The description is divided into two parts – ontology, kept in a separate HTML file
and annotation, written directly inside the related web page.

SHOE operates with classes (called categories), which are organised in a simple is-
a hierarchy. Instances of classes are always bound with a page or its part. Between
instances of a given class are defined relations.

Thanks to simple design, the definition of the SHOE formalism consists of several
rules:

ΨSHOE = ({category, instance, relation}, {DefRelation/2, Related/2, InstanceOf/2},

{related/2(relation, instance, instance), instance instanceOf/2 category,

category defRelation/2 category}, {}, {}) (4.9)

A part of the running example can be implemented as (the rest is obvious)

<DEF-CATEGORY NAME="Human" ISA="base.SHOEEntity">

<DEF-CATEGORY NAME="Man" ISA="Human">

<DEF-CATEGORY NAME="Woman" ISA="Human">

<DEF-RELATION NAME="father-of">

<DEF-ARG POS="1" TYPE="Human">

<DEF-ARG POS="2" TYPE="Man">

</DEF-RELATION>

<INSTANCE KEY="http://www.heaven.org/Adam">

<CATEGORY NAME="Man">

</INSTANCE>

<INSTANCE KEY="http://www.heaven.org/Eve">

<CATEGORY NAME="Woman">

</INSTANCE>

<INSTANCE KEY="http://www.heaven.org/Abel">

<RELATION NAME="father">

<ARG POS=TO VALUE="Adam">

</RELATION>

</INSTANCE>

4.7.3 XOL

The XOL formalism (XOL: An XML-Based Ontology Exchange Language) was devel-
oped in 1999 for a bioinformatics community. Crucial requirement was an XML format
for object-oriented knowledge representation system.

38

4.7 Designed for Semantic Web

The semantics of XOL are based on OKBC-Lite, which is a simplified form of the
knowledge model for the OKBC (Open Knowledge Base Connectivity, see section 5.4.3).
The design of the language is inspired by Ontolingua – the advantage is the XML storage
instead of LISP.

Similarly to SHOE, XOL defines classes, slots and individuals (same as category,
relation, instance). The explanation can be replaced by the running example:

<class>

<name>Human</name>

</class>

<class>

<name>Man</name>

<subclass-of>Human</subclass-of>

</class>

<slot>

<name>fatherOf</name>

<domain>Man</domain>

<slot-value-type>Human</slot-value-type>

</slot>

<instance>

<name>Adam</name>

<type>Man</type>

<slot-values>

<name>fatherOf</name>

<value>Adam</value>

</slot-values>

</instance>

<instance>

<name>Abel</name>

<type>Man</type>

<slot-values/>

</instance>

The inspiration by OKBC brought into XOL several basic types (integers, real num-
bers, string, and booleans), collections (set, bag, list) and a set of built-in classes
(THING, CLASS, etc.) and a slot DOCUMENTATION. It has also limited restrictions
on slot values beside obvious slot type – there are called facets. There can be bounded
cardinality, defined type of collection or bounded numeric value. An interesting facet is
INVERSE allowing bidirectional relation between slots.

4.7.4 RDF

The first draft of RDF was released in October 1997. It was developed by the W3C for
a creation of metadata describing web resources – RDF stands for Resource Description

39

4 Ontologies

Framework.
One of the goals of RDF is to be complementary to XML – to make it possible to

specify semantics for data based on XML in a standardised, interoperable manner. The
goal is to define a mechanism for resource description that makes no assumption about
a particular application domain nor the structure of a document.

The RDF data model is based on semantic networks. The graph consists of tripples
(statements) subject, predicate, and object; the predicate (edge) denotes a relation
between the subject and object (vertices). Predicates and objects are entities that can
be referred by URI (or URL in the WWW), literal, or blank node. Properties define
specific aspects of a the entities.

RDF supports reification. Statements are resources and thus can be described in RDF.
It allows to express properties of such statement like validity, reliability, e.g. formulas in
higher order logics. The other side of this advantage is its undesirable consequences for
inference. For this reason the latest standards (OWL Lite and OWL DL) do not allow
reification.

There are two basic types of RDF storage languages – XML and N3 tripples (subject,
predicate and statement). The common way is to share data in XML, the tripples are
used in inference engines.

There are numerous tools and further standards. Within scope of this thesis RDF is
interesting only as a base for further formalisms.

4.7.5 RDF Schema

RDF Schema (also RDFS) is an extension of the RDF and introduces basic constructs for
definition of ontology: classes, properties, literals, resources, and corresponding relations.
It is a simple language able to define hierarchies of classes of resources, instances using
type attribute, and properties with a range and a domain (and subproperties). There
are missing for example restrictions.

RDFS suffers from several problems. First, RDFS was originally defined as a set of
syntactic constructs and logical foundation and semantics were added later. Second,
some approaches are not standard. For example there is no boundary between classes
and instances (there can be a class instance of another class, rdf:type property used in
a chain); XMLLiteral is defined as instance of Datatype but a subclass of Literal, see
w3c website or figure 5.14.

The running example helps to compare RDFS formalism and its successors, DAML-
ONT, DAML+OIL, and OWL.

<rdfs:Class rdf:ID = ’Person’ />

<rdfs:Class rdf:ID = ’Man’ >

<rdfs:subClassOf rdf:resource = ’#Person’/>

</rdfs:Class>

<rdfs:Class rdf:ID = ’Woman’ >

<rdfs:subClassOf rdf:resource = ’#Person’/>

</rdfs:Class>

40

4.7 Designed for Semantic Web

<rdfs:ObjectProperty rdf:ID = ’father’>

<rdfs:domain rdf:resource=’#Person’ />

<rdfs:range rdf:resource=’#Man’ />

</rdfs:ObjectProperty>

<rdfs:ObjectProperty rdf:ID = ’mother’>

<rdfs:domain rdf:resource=’#Person’ />

<rdfs:range rdf:resource=’#Woman’ />

</rdfs:ObjectProperty>

<Man rdf:ID=’Adam’ />

<Woman rdf:ID=’Eve’ />

<Man rdf:ID=’Abel’ >

<father rdf:resource=’#Adam’>

<mother rdf:resource=’#Eve’>

</Man>

<Man rdf:ID=’Cain’>

<father rdf:resource=’#Adam’>

<mother rdf:resource=’#Eve’>

</Man>

There can be also defined a hierarchy of properties. In the running example, there
can be defined a relation parent-of with domain and range Human. The father and
mother properties can be then defined as subproperties with a more restricted domain
or range.

Currently, RDFS is used as a language of RSS – Really Simple Syndication, a format
for syndicating news and the content of news-like sites. According to the w3c web, the
RDFS is now considered a part of RDF.6

The RDFS formalism is further used as a basis for further formalisms, so its formal
definition is provided. The concepts and relations can be found in the RDF vocabulary
(http://www.w3.org/TR/2004/REC-rdf-schema-20040210/). For definition purposes,
supporting vocabulary was omitted (containers, collections, reification, and utility).

ΨRDFS = (CRDFS , RRDFS, {}, {}, {}), (4.10)

where

CRDFS = {rdfs:Resource, rdfs:Class, rdfs:Literal, rdfs:Datatype, rdf:XMLLiteral,

rdf:Property}

RRDFS = {rdfs:range, rdfs:domain, rdf:type, rdfs:subClassOf, rdfs:subPropertyOf,

rdfs:label, rdfs:comment}

6source: http://www.w3.org/TR/rdf-schema/

41

4 Ontologies

4.7.6 DAML-ONT

The DARPA Agent Markup Language (DAML-ONT) was introduced in October 2000
as a joint work between US Department of Defence, industry and academia in both the
US and the European Community. It is based on RDF Schema.

Again, its purpose was to become a standard in ontology language domain. After
three months, the language was merged with OIL into DAML-OIL.

4.7.7 OIL

OIL (Ontology Interchange Language) is formalism developed in Europe at the same
time as DAML-ONT. It has been mapped to RDFS in order to achieve maximal com-
patibility with existing applications [15].

OIL developers were aware about the RDFS reification problem. They decided to
exclude reification from the new formalism.

The design of OIL expected three layers with increasing capabilities – Standard, In-
stance, and Heavy. Standard OIL supports the necessary mainstream modelling prim-
itives with precise semantics, making complete inferencing viable. Instance OWL im-
proves individual integration and included a database capability. Heavy OIL extends
rule language and metaclass facilities.

During development of DAML-ONT and OIL, the research groups influenced each
other and the languages were very similar.

4.7.8 DAML+OIL

Three months and one day after the announcement of DAML-ONT, joint EU/US com-
mittee released a new language, DAML+OIL. It combined both languages and provided
both a model-theoretic and axiomatic semantics.

A part of the initial release was also a difference between DAML+OIL and the prior
languages – there were 9 changes from DAML-ONT and 14 for OIL. The comparison7

shows, that OIL is more strictly defined while DAML-ONT is more RDFS compatible.8

Most of the publicly available ontologies is developed in DAML+OIL. The official site
itself offers a library of ontologies: www.daml.org/ontologies.

For, DAML+OIL, the running example will not be shown, because it is identical to
the one in the RDFS section. Only the rdfs:Class is replaced with daml:Class and
the same is for rdfs:ObjectProperty.

Instead, a restriction is demonstrated:

<daml:Class rdf:ID="Person">

<rdfs:subClassOf rdf:resource="#Animal"/>

<rdfs:subClassOf>

7source: http://www.daml.org/2000/12/differences-oil.html
8From the differences between OIL and DAML-OIL: “Arbitrary RDF cannot be used in OIL ontolo-

gies.” or “OIL has explicit ‘OIL’ instances; DAML+OIL relies on RDF for instances.”

42

4.7 Designed for Semantic Web

<daml:Restriction daml:cardinality="1">

<daml:onProperty rdf:resource="#hasFather"/>

</daml:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<daml:Restriction>

<daml:onProperty rdf:resource="#shoesize"/>

<daml:minCardinality>1</daml:minCardinality>

</daml:Restriction>

</rdfs:subClassOf>

</daml:Class>

In this example, a person is a subclass of animal and is required to have exactly one
father. Furthermore, each person have at least one shoe size. The restriction defines an
anonymous class (class of all things that have exactly one father). The person is then
required to be a subclass of this anonymous class.

DAML+OIL allows to extend already existing classes, which simplifies usage of upper
ontologies. It is possible to add required features to the used concepts without changing
the imported file.

<daml:Class rdf:about="#Person">

<rdfs:subClassOf>

<daml:Restriction daml:maxCardinality="1">

<daml:onProperty rdf:resource="#hasSpouse"/>

</daml:Restriction>

</rdfs:subClassOf>

</daml:Class>

4.7.9 OWL

Currently, OWL (Web Ontology Language) is the leading edge of formalisms designed for
semantic web and a w3c recommendation for standard for ontology authoring. It started
after two years of DAML+OIL development. A motivation was obviously clarification
of its semantics in order to allow development of inferencing engines. A document
describing changes between DAML+OIL and OWL9 consists of twelve points, in most
cases only renaming or minor changes (e.g. OWL incorporates recent definitions of RDF
and RDF Schema, including XML Schema data types).

The OWL language defines three sub-languages, similarly to OIL – OWL Full, DL
(Description Logic), and Lite. The language and its flavours are precisely described in
the w3c website: http://www.w3.org/TR/owl-ref.

The OWL Full is the OWL language without any restriction. Ontology in OWL Full
can use any combination of OWL and RDFS constructs. OWL Full is a real superset of
RDFS.

9source: http://www.w3.org/TR/owl-ref#appD

43

4 Ontologies

OWL DL is a maximal subset of OWL Full against which current research can as-
sure that a decidable reasoning procedure is realizable. The most important restriction
defined in OWL DL is a requirement to strictly separate classes, instances, properties,
and types. Already OIL distinguished between classes and instances, but this feature
has been lost in DAML+OIL. A second restriction of OWL DL is disallowed mix of
OWL and RDFS constructs – only the OWL ones should be used. There are forbidden
statements on RDFS resources and some other rules.

OWL Lite further restricts the constructs in order to provide a minimal useful subset,
which can be easily implemented. Only simple class hierarchies can be built, there can
be used property constraints and characterisations, and classes can be constructed only
though intersection or property constraints.

In the hierarchy of Description Logics, the OWL DL is based on SHOIN(D) and
OWL Lite on SHIF (D) logics.

The OWL formalism is currently the top of the developed formalisms for the semantic
web. Therefore there will be provided a formal definition. The definition covers OWL
Full, because the complexity makes no problem. Obviously, the other two flavours are
in the ≺ relation: OWL Lite ≺ OWL DL ≺ OWL Full. Furthermore, only OWL Full is
compatible with RDFS, while the sub-languages deprecate the RDFS constructs.

The formal definition does not fully describes all concepts and relations available in
OWL, because the list is rather long and can be easily obtained from the index of OWL
elements (http://www.w3.org/TR/owl-ref/#appA). The definition 4.10 of RDFS is
used.

ΨOWL = (COWL, ROWL, SOWL, {}, {}), (4.11)

where

COWL = CRDFS ∪ {owl:AllDifferent, owl:AnnotationProperty, . . . ,

owl:TransitiveProperty}

ROWL = RRDFS ∪ {owl:allValuesFrom, owl:backwardCompatibleWith, . . . ,

owl:versionInfo}

SOWL differs for OWL Full, DL, and Lite

The SOWL make the difference between the OWL flavours. For the OWL Full the set
is empty and the more other two flavours add their restrictions, i.e. the set of OWL-DL
restrictions is a subset of the OWL-Lite’s one: ‖SOWL−DL‖ ⊂ ‖SOWL−Lite‖.

The running example written in OWL (OWL Lite in this case) shows using the basic
constructs:

<owl:Class rdf:ID = ’Person’ />

<owl:Class rdf:ID = ’Man’ >

<rdfs:subClassOf rdf:resource = ’#Person’/>

</owl:Class>

44

4.8 Non-ontology Formalisms

<owl:Class rdf:ID = ’Woman’ >

<rdfs:subClassOf rdf:resource = ’#Person’/>

</owl:Class>

<owl:ObjectProperty rdf:ID = ’father’>

<owl:label>father</owl:label>

<rdfs:domain rdf:resource=’#Person’ />

<rdfs:range rdf:resource=’#Man’ />

<owl:minCardinality>1</owl:minCardinality>

<owl:maxCardinality>1</owl:maxCardinality>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID = ’mother’>

<owl:label>mother</owl:label>

<rdfs:domain rdf:resource=’#Person’ />

<rdfs:range rdf:resource=’#Woman’ />

<owl:minCardinality>1</owl:minCardinality>

<owl:maxCardinality>1</owl:maxCardinality>

</owl:ObjectProperty>

<Man rdf:ID=’Adam’ />

<Woman rdf:ID=’Eve’ />

<Man rdf:ID=’Abel’ >

<father rdf:resource=’#Adam’>

<mother rdf:resource=’#Eve’>

</Man>

<Man rdf:ID=’Cain’>

<father rdf:resource=’#Adam’>

<mother rdf:resource=’#Eve’>

</Man>

An interesting extension of OWL is a project SWRL: A Semantic Web Rule Lan-
guage,10 combining OWL (DL or Lite) and RuleML (Unary/Binary Datalog). SWRL
enriches OWL by Horn-like rules.

Although OWL-Lite was designed to allow inferencing, even the most developed sys-
tem for OWL processing, Jena2, does not provide this functionality. Its OWL FB
Reasoner defines itself as “A useful but incomplete implementation of the OWL/Lite
subset of the OWL/Full language.”11

4.8 Non-ontology Formalisms

As an extension to the classic view on ontology were [considered] several “formalism”
describing structures, but not commonly viewed as ontology. The reason for introduction

10source: http://www.w3.org/Submission/SWRL/
11source: http://jena.sourceforge.net/inference/index.html

45

4 Ontologies

of these special cases is not the intention to mutual transformation, but

• convert common computer objects (files, source codes, database tables) to for-
malisms processable by tools of knowledge management, for example OWL, and

• allow set operations available in GOF (see section 5.6).

The first sample of such “ontology” is a directory tree. It holds a special kind of
knowledge – how to keep order in a large amount of file with close meaning (source code,
its documentation, tests, config files etc.). An example of public “ontology” is a definition
of a feasible structure of a software project (appeared at http://www.jroller.com/

page/gru/20021206, here is shortened version):

root\

ejb\

ejb-app1\ (root of an ejb based application)

lib\ (dependent jars)

res\ (resource files like ejb-jar.xml)

src\ (src)

test\ (Unittests)

res\ (global resource files)

db\

scripts\

web\ (root of all web applications)

web-app1\

lib\

res\

src\ (all servlet/Javabean srcs)

view\ (jsp/html pages)

A formal definition for the “filesystem formalism” denotes root as >.

Ψfilesystem = ({directory, file,>}, {SubDirectory/2, InDirectory},

{>subDirectory directory,> inDirectory file, (4.12)

directory subDirectory directory, directory inDirectory file},

{}, {})

A similar “formalism” are bookmarks stored in a web browser. Bookmarks can be
viewed as filesystem, with substitutions bookmark → file and folder of bookmarks →
directory.

Both directories and bookmark folders define structure of domain of interest, usually
very simplified as the number of instances (files, bookmarks) is not large.

46

4.9 Software Support

4.9 Software Support

In the former text numerous formalisms have been presented. Most of them have a
formal background theory in some kind of logic (mainly first-order logic).

In practice, capabilities of ontology formalism are given by capabilities of software
implementing the formalism. The software necessary to work with formalism require
knowledge acquisition tools, query engines, graphical interfaces for representation of the
content of knowledge bases etc.

Nowadays, there exist huge amount of available software suitable for particular tasks
in developing semantic web.

In the following sections will be presented editors and libraries capable of handling
ontology formalisms.

4.9.1 Editors

Ontology editors are employed as knowledge acquisition tools. They are usually re-
stricted to one formalism and others are in a limited way by its I/O modules, i.e. through
import and export.

Beside the presented editors, there are many others (OntoEdit, OILed etc.). The
presented one are the most important in the context of this work. Both are based
on frames, e.g. classical frame-based knowledge-base editors with support for classes,
instances, slots, multiple inheritance, etc.

Apollo (CH)

ApolloCH (http://krizik.felk.cvut.cz/apolloch) is the main source of ontologies
developed in the CIPHER project and is now being developed at the Czech Technical
University in Prague. It is based on Apollo editor originated from The Open University,
UK (http://apollo.open.ac.uk/index.html). The original core has been extended
in several ways.

Unique features comprise comparison of two ontologies, copy data (classes, instances)
between them, support for concepts not yet defined, fast walking through the knowledge
base (move between concepts similarly to hypertext), etc.

The main purpose of ApolloCH is to prepare ontologies in the OCML formalism. Its
internal format is XML for better cooperation with modern applications.

As it is a Java application, it makes possible to serve as a library for accessing Apollo
files and as an engine for knowledge base manipulation. This feature is used in GOF
framework (see 5.6).

The ApolloCH internal XML format is used as one of formalisms used in this thesis
deals with. It replaces the OCML formalism, because it provides an interface and
contains only the structural part of ontologies.

47

4 Ontologies

Protégé

It allows user to define a form for entering values of instances’ slots. There is a evaluation
core processing simple queries over the knowledge base.

Protégé is designed to support multiple formalisms [39]. Its extensible architecture
allows development of customised knowledge-based applications.

Protégé provides so-called RDFS Storage Backend to work with RDFS-based for-
malisms (OWL, DAML), which meets some incompatibilities between the frames and
RDF – Protégé does not support for example multi-class membership, i.e. a concept
being an instance of multiple classes. On the other hand, the constraints on range of a
property (slot) can be in Protégé a value of primitive type or multiple classes. A table
comparing concepts used by Protégé and RDFS is at page 80.

Latest development of Protégé leads to support missing features in frames, for example
subproperties. It can be done by defining a new facet describing, that the particular slot
is a “subslot” of another one.

The Protégé homepage also offers a set of available ontologies in the format of this
editor: http://protege.stanford.edu/plugins/type_ontologies.html.

4.9.2 Engines

An important piece of software are engines particular formalism and eventually evalu-
ating various queries.

For accessing ApolloCH files the editor’s files (JAR, Java Archives) were used as a
library.

For processing RDFS and OWL, two libraries were examinated: KAON and Jena.
Besides reading and writing files in the mentioned formats, both libraries can store
knowledge bases in memory or in a persistent base and provide inference support for
some subset of DL.

None DL library provided simple and uniform interface for RDFS and OWL, but
rather separated both formalisms and there was a technical complication. Although
method for reading the Apollo files contains 10 occurrences of a method kb.addConcept

(adding a concept to a knowledge base), the method using Jena library contains 52
occurrences of this method.

The Jena (again in version Jena2, www.hpl.hp.com/semweb/jena2.htm), open source
project originating in the Hewlett-Packard Labs Semantic Web Research. Its base can
be queried using the RDQL (RDF Query Language) standard. Jena is the most reliable
platform for accessing RDFS/OWL knowledge bases.

The second library choosed was the KAON (KAON2 in these days, http://kaon2.
semanticweb.org/) is a library with an API for programmatic management of OWL-DL
ontologies and inference engine supporting the SHIQ(D) subset of OWL-DL. This in-
cludes all features of OWL-DL apart from nominals (also known as enumerated classes).

In the early stages were tested also OWLAPI as a simple interface to OWL files. It
was able to read only several OWL files, so it was not further investigated. OGraph,
a promissing library providing API to OWL, failed to process some of basic features of

48

4.10 Upper Ontologies

Thing

RepresentedThingIntangible

Relationship

Collection

IndividualObject

Event Stuff IntangibleObject

Figure 4.12: Upper concepts in Cyc

OWL, like subproperty with not fully defined range and domain. It also does not process
completelyFills.

All the mentioned engines offer much more functionality than described here. The
dark side of the advanced features is a requirement of a specific form of knowledge base.
Although theoretically there is no problem, a practical experience shows incompatibilities
between available ontologies and capabilities of the engines.

4.10 Upper Ontologies

Knowledge-based systems are expensive to build, test, and maintain. A huge amount
of effort can be saved by using a standardised ontology. Available ontologies will cover
exactly the application needs, but the existing ontologies can be used as a base covering
the general concepts.

Upper ontologies, also known as top-level (Sowa, [45]) or general ontologies (Russel &
Norvig, [44]), incorporate decisions about how to represent a broad selection of objects
and relations. Domain ontologies refer to this upper level as a base of its common
vocabulary. It allows different domain ontologies operate on a abstract level.

A design of an upper ontology differs between different projects, because there is
no self-evident way of dividing the world up into concepts. The diversity is visible in
figures 4.12–4.15 representing the top concepts in particular upper ontologies.

4.10.1 Cyc

The purpose and features of the Cyc upper ontology was already mentioned in section 3.4.
It is the largest ontology in these days.

49

4 Ontologies

0

200000

400000

600000

800000

1e+06

1.2e+06

1.4e+06

0 5 10 15 20 25 30 35 40 45 50

Growth of Wikipedia articles

Figure 4.13: Wikipedia article count from January 2001 to December 2004

4.10.2 WordNet

Wordnet serves as an semantic lexicon of the English language. As its basic formalism
it uses semantic network to represent synonyms, antonyms, hyponyms, and meronyms.
It is developed from 1985. WordNet was developed by the Cognitive Science Laboratory
at Princeton University under the direction of Professor George A. Miller (Principal
Investigator) with many contributions by other people.

Currently (beginning of 2005) it contains more than 150.000 words.

4.10.3 Wikipedia

Another application of semantic networks is Wikipedia. Wikipedia is a Web-based ency-
clopedia. Unlike Cyc, it consists of a huge amount of articles to be read by people. The
articles contain images and many hypertext links either to another articles or to external
Internet sources. Wikipedia was used in this thesis as one of sources of information.

One of its goal is freedom – it is multi-lingual, “copylefted”, designed to be read and
changed by anyone (even with the danger of vandalism). Thousand of users edit and
maintain huge amount of articles about many concepts. Wiki stores also a complete
history of articles, so it is possible to watch evolution of the text.

The software used for Wikipedia is an opensource program wiki, started by Ward
Cunningham, and the whole database and web server is hosted and supported by the
non-profit Wikipedia Foundation.

At the end of 2004 Wikipedia contained approximately 1.300.000 articles.

50

4.10 Upper Ontologies

Entity

PhysicalAbstract

ProcessObjectQuantity

Proposition

Attribute

Relation

SetOrClass

Figure 4.14: Upper concepts in SUMO

4.10.4 SUMO

The Suggested Upper Merged Ontology (SUMO, http://suo.ieee.org/) was one of
intended subjects of transformation between formalisms.

SUMO is developed by the Standard Upper Ontology Working Group. It was created
by merging a number of existing upper-level ontologies and provides a foundation for
middle-level and domain ontologies. It has links to several languages – Hindi, Chinese,
Italian, German, Czech, and English. Besides the core of the SUMO, there are available
attached the MId-Level Ontology (MILO) and ontologies of Communications, Countries
and Regions, distributed computing, Economy, Finance, engineering components, Geog-
raphy, Government, Military, North American Industrial Classification System, People,
physical elements, Transnational Issues, Transportation, Viruses, World Airports.

As it is becoming an IEEE standard, it is important to involve the terms in SUMO
into applications to accomplish the ideal of the semantic web – a common language for
different applications.

SUMO concepts are mapped to the WordNet. Mapping SUMO to the WordNet is
motivated especially to promote the use of SUMO in natural language understanding
applications.

The SUMO consists of four basic parts. The first part, Structural Ontology, con-
tains definitions for relations that serve as the framework for defining the ontology. The
second part, Base Ontology, is similar to philosophical ontologies since it contains fun-
damental ontological notions such as abstract and physical entity and the distinction
between objects and processes. It is basically a taxonomy containing the hierarchy of
concepts with definition of each concept written as plain text. The third part consists
of several sections. Each of these sections covers a domain that is to some degree stan-
dardised and the concepts of which are often referred to in various disciplines. Domains
covered by this part of SUMO include Set/Class Theory, Graph Theory, basic arith-
metics and units of measurement. There is also the Temporal section based on Allen’s
temporal relations and the Mereotopology section that contains a basic axiomatisation

51

4 Ontologies

Entity

DimensionPlaceTime-Span

Event

Persistent ItemTemporal Entity

Period
Actor Physical Stuff Type

Figure 4.15: Upper concepts in CRM

of part/whole relations, as well as a normalisation of holes. The remaining part of the
ontology consist of sub-hierarchies and axioms relating to process types (e.g. “Change-
OfPossession” and “Touching”), object types (e.g. “Book” and “Fish”), and attribute
types (e.g. “SocialRole” and properties of sensation).

Currently SUMO contains in all parts (including the domain ontologies) 20,000 terms
and 60,000 axioms.

4.10.5 CRM

The CIDOC Conceptual Reference Model (CRM, http://cidoc.ics.forth.gr/) pro-
vides definitions and a formal structure for describing the implicit and explicit concepts
and relationships used in cultural heritage documentation.

CRM is not upper ontology like Cyc or SUMO, it is on an edge between upper on-
tologies and so called domain ontologies. It defines top concepts, but concentrates more
on topics connected to history.

The CRM ontology [22] is one of the upper ontologies widely used in culture heritage
domain.

The CRM ontology has been used in the CIPHER project for modelling persons,
places, events, and interrelations between them. This decision speeded up the annotation
of all the 36 stories in the project. Also a cooperation of teams was simplified as both
sides worked with a standard ontology and the ontology did not change during the work.

The CRM ontology suffers from not being a part of a bigger group of ontologies.
During work on the CIPHER project was required a conceptualisation of family relations,
not covered by CRM. These relations have been created in an application ontology (a
common level defined within an application). It contradicts with ontology purpose – to
consolidate used vocabulary.

52

4.11 Others

4.11 Others

4.11.1 Dublin Core Metadata Initiative

The Dublin Core (DC) Metadata Initiative (http://www.dublincore.org/) is an open
forum engaged in the development of interoperable online metadata standards that
support a broad range of purposes and business models. DCMI’s activities include
consensus-driven working groups, global workshops, conferences, standards liaison, and
educational efforts to promote widespread acceptance of metadata standards and prac-
tices.

A detailed investigation of the Dublin core shows, that it is not an ontology in our
point of view, although it is often referred in context of ontologies. Dublin core does not
define any structure. It defines only a set of attributes of resources. A good example is
DC as a part of RDF:

1. <dissertation>

2. <dc:author>Petr Aubrecht</dc:author>

3. </dissertation>

1. part of regular RDF in XML form, element denoting and object,

2. additional attribute defined by the Dublin Core.

Dublin Core can be described as a formalism with a grammar containing only relations

Ψdc = ({}, {title, creator, subject, description . . . }, {}, {}, {}). (4.13)

A formalism with a DC extension is then a formalism with relations extended by the
DC set

ΨX = (CX , RX ∪ {title, creator, subject, description . . . }, SX, SX , AX). (4.14)

53

4 Ontologies

54

5 Ontology Transformations Between
Formalisms

5.1 Motivation

One of the main purposes of ontologies according to [17] is knowledge sharing and reuse.
The whole previous chapter was dedicated to a description of some of the formalisms
available. The formalisms have their specific advantages and drawbacks, they support
particular features or focus on a simplification in some situation. Ontologies are created
for a specific purpose in the most appropriate formalism satisfying needs of a narrow
target community. The problem arises when the ontology is going to be used in another
system supporting a different formalism. Although the main idea of ontologies is to con-
solidate hierarchy of concepts, the formalisms/formats used are mutually incompatible.

An unavailability of an upper ontology was one of the problems in the CIPHER
project. Using upper ontologies saves huge amount of effort – it is not necessary to
reinvent the wheel again and again and they provide a proven solution.

Unfortunately, the upper ontologies are developed in a different formalisms than
OCML, which was used in the project. The two most popular options are unusable
– SUMO is being created in a variant of KIF and for Cyc there has been developed a
special language, CycL.

One of the outputs of the CIPHER project were several ontologies. As the project
is concerned with history, there were developed ontologies of stories from the South
Bohemia and the history of Bletchley Park in UK. The intention is to make the ontologies
available to further processing and thus it is necessary to store it in a formalisms used
by other research groups.

A reason for using OCML instead of OWL was the procedural capability of OCML.
It was used in the ontology of time [28] and further in the Story Fountain portal. The
portal serves as a prototype of the semantic web – the pages are described in ontologies
and a search in the ontologies allows semantic questions and more advanced queries.
More information can be found in [37].

For this purpose a framework has been prepared to translate these formalisms to and
from the OCML. Later, the approach was made general and successfully tested as a
transformation between multiple formalisms.

A more theoretical motivation for a generalised formalism can be the early architecture
of Semantic web, proposing RDFS, Ontology vocabulary, and logic layers in figure 4.6
without clear interconnection between them. The approach presented in this text could
be the missing interconnecting element. The RDFS standard is well known today with

55

5 Ontology Transformations Between Formalisms

reliable parsers, there already exist verified vocabularies (SUMO, Cyc) and processing
logic operations can be done either in first-order logic (Prolog) or in CycL. All these
parts can be connected by the presented framework.

The need of transformation of ontologies will be required in the near future. The
demand will come from the semantic web domain, which plans to cover the whole world-
wide-web, all its pages, applications, relations, etc. The idea is to use ontologies to
declare meaning of the web page/application/service/what-so-ever. The service part of
the world-wide web will be important, because it is a connection between internet and
business and can be applied for example in b2b negotiation, electronic marketplaces,
etc.

Although designers of ontology formalisms, especially developers from the W3C Con-
sortium, declare, that their latest formalism is going to be the only formalism acceptable
by the whole world, experience on the contrary shows, that particular formalisms have
specific features, which make them feasible for particular tasks.

Researches have not yet reached consensus on which formalism is the most suitable
(even for semantic web), which features or syntax is the most appropriate. It is likely
that more formalisms emerge.

The w3c consortium pushes to use its own ontology standard – OWL (described in
section 4.7.9). The standard itself shows, that the decision is more controversial; OWL
itself exists in three versions with different expression power and so far there does not
exist engine giving reliable results.

Lisp-based formalisms (like OCML, section 4.5.4) are bounded to a Lisp interpret and
it is difficult to use such knowledge base from another programming language.

This diversity introduces incompatibilities between systems and requires transforma-
tion between different knowledge bases using different formalisms and different variants
of storage (XML, 3-tuples, etc). Therefore the consolidating application has to han-
dle both different storage formats, and various formalisms with mutually incompatible
constructs.

As a result, there is a need to provide a way how to transform an existing formalism
to another one. Typically there are at least two systems – one offering the data (source
system) and one processing the data (target system, for example reasoner). In the
further text a methodology for such transformation will be given.

5.1.1 CIPHER Project

The research project of the 5th Framework Programme of European Community entitled
“Communities of Interest Promoting Heritage of European Regions” (CIPHER) – www.

cipherweb.org – served as a practical testbed for the results of this thesis. Its main
aim was to develop Cultural Heritage Forums, associated to regions, that empower
communities to create sustainable online cultural content for themselves.

A group of tool for dynamic narrative authoring and presentation have been developed
within CIPHER. An ontology editor ApolloCH have been developed by KMI and ex-
tended by CTU – there were added features like multilingual support, comparison of two
ontologies etc. Resource Annotation Tool and Outline Creation Tool (RAT-O) allows

56

5.2 Migration within One Formalism

to create personalised annotations of any electronic resources using ontology concepts.
Dynamic Narrative Authoring Tool (DNAT) is a tool for authoring conceptual graphs
with ontology support. Having multilingual ontology, it can automatically translate la-
bels of narrative annotations. Temporal Inference Engine processes temporal facts and
answers queries.

An crucial part of the project is processing of ontologies. For the forum a set of ontolo-
gies annotating stories from the South Bohemia was prepared and presented. The work
on annotations showed, that frame-based formalisms are very restrictive and it would
be useful to allow ad-hoc relations with later finalisation. There were occasionally prob-
lems with an exact decision which usages of slots due to unclear semantics. Temporary
relations would help faster annotations and allow later solution of such problems.

The image 5.1 shows a structure of collaboration between several CIPHER tools.
Apollo(CH) is a source of ontologies, the PAT editor and RAT-O allows creation of
annotation (targeted to spatial information or with a support for a story creation). The
final stories are presented at the CH-Portal. Ontologies support all the activities, i.e.
for semantic search.

In the beginning, there were a need of a ready-made ontology reuse. Upper ontologies
were investigated, but no one was in a required formalisms. As a base was selected the
CRM ontology (described in section 4.10.5), which was manually created in ApolloCH.

This was the moment a research allowing ontology migration between formalisms
started.

5.2 Migration within One Formalism

A more frequently solved problem is sharing ontologies between system with one common
formalism. Pieces of ontologies (usually data, instances) within one application migrate
between two particular ontologies, i.e. information exchange between two knowledge
bases.

This problem is often addressed by multiagent systems with independent agents
(MAS) collecting knowledge and creating their own structured view of the surround-
ing world. At the moment two agents have to communicate, they have to consolidate
their ontologies.

Also business to business (b2b) systems have to handle sharing data between two
different ontologies and convert the data between them.

Nowadays, there exist several tools supporting (semi)automatic ontology sharing or
conversion. They can be classified according to different features. The tools provide
ontology merging, building of semantic bridges, and also reasoning done simultaneously
on a number of ontologies.

An important aspect making the difference between the knowledge sharing tools is the
use or necessity of instances. One type of tools are based on graph-matching techniques
and use of synonyms to find the corresponding concepts and therefore they do not require
instances. Another type of tools uses machine learning techniques either for classification
of instances of one ontology using the classes of the other ontology or to build up a new

57

5 Ontology Transformations Between Formalisms

Figure 5.1: A schema of a part of CIPHER tools

58

5.3 Known Approaches

ontology from the instance of all available ontologies. These tools require a relatively
large number of different instances to work properly.

The tools for sharing knowledge within one formalism comprise projects:
Chimaera http://www.ksl.stanford.edu/software/chimaera

OntoMerge http://cs-www.cs.yale.edu/homes/dvm/daml/

ontology-translation.html

FCA-Merge http://www.aifb.uni-karlsruhe.de/WBS/gst/papers/2001/

IJCAI01.pdf

ONION http://dbpubs.stanford.edu:8090/pub/2000-20

GLUE http://anhai.cs.uiuc.edu/home/papers/glue-handbook.pdf

PROMPT http://www-smi.stanford.edu/pubs/SMI_Reports/

SMI-2000-0831.pdf

Ontology
Alignment

http://www.atl.external.lmco.com/projects/ontology

5.3 Known Approaches

Transformation of ontologies between formalisms is not very common. According to
[49] there are three main approaches to transformation between different knowledge
representation formalisms:

5.3.1 Mapping Approach

This approach leads to the lowest loss of information. A mapping is created which
transforms expressions in the source formalism to expressions in the target formalism.
Such mapping has to be defined for every pair of formalisms. Therefore it can be well
adapted to the two specific formalisms. However the number of transformations that
have to be designed increases sharply with the number of formalisms involved. It is
also necessary to check properties of every transformation individually. That is why this
approach is feasible only for systems working with a relatively small and fixed set of
formalisms. An example of this approach is the OntoMorph system described in [8].

5.3.2 Pivot Approach

To avoid the necessity to create a large number of transformations one formalism is
chosen as the pivot formalism. It has to be a formalism that is the most expressive of
all the considered formalisms. For each of the other formalisms a mapping is designed
that transforms expressions between the particular formalism and the pivot formalism.
A transformation between two different formalisms is then done via the pivot formalism.
The pivot formalism has to be very expressive to enable lossless transformation of all
other formalisms into it. It has to be extended almost every time a new formalism is
added to the system. Especially in case the system involves formalisms that are unlike
each other e.g. formalisms based on description logic, formalisms based on frames, UML

59

5 Ontology Transformations Between Formalisms

etc., the pivot formalism would have to be quite complex. It is also difficult to design
the pivot formalism so that it would not be biased towards one type of formalisms.

5.3.3 Layered Approach

The third approach uses a layered architecture containing languages with increasing ex-
pressiveness [49]. There has been an attempt by W3C to provide a standard group of
languages that would be layered on top of each other, using RDFS as the layer. However
other requirements on properties of the higher ontology languages, especially their decid-
ability needed for reasoning, were more significant for their design than full backwards
compatibility with the RDFS. The higher ontology languages such as DAML+OIL and
OWL only use terms defined by RDFS as their basis. Except for OWL-Full the onto-
logical languages do not cover RDFS completely. Some expressions valid in RDFS are
not allowed in the other languages.

5.3.4 Family of Languages

In addition to the approaches described above a new approach called the Family of lan-
guages approach is proposed in [14]. It is a generalisation of layered and pivot language
approach. In [14], the Family of Languages is defined to be:

Definition (Family of Languages Property) A set of languages L1, ... Lm satisfies
the family of language property, iff they form a semi-lattice with respect to the coverage
relation, i.e. if for every pair of languages Li, Ljin {L1, . . . , Lm} there exists a language
L ∈ {L1, . . . , Lm} such that (Li ≺ L) ∧ (Lj ≺ L).

The coverage relation can be defined in a number of ways. It depends on the proper-
ties, which the transformation should preserve. There are four types of coverage relation:
language-based coverage (one language is a subset of the other), interpretation-based cov-
erage (there exists an interpretation-preserving transformation between the languages),
consequence preserving and consistency-preserving. The last two of them imply a loss
of information which is inherent in transformation from a more expressive language to
a less expressive one.

5.3.5 Separated Worlds

Nowadays ontologies are developed in two basic areas – in multiagent systems, which
tend to use Lisp-based formalisms (Ontolingua, Cyc, OCML) and semantic web, which
prefers RDF/XML based formalisms (DAML, OWL).

Tools translating ontologies respect the boundaries and usually translate between near
formalisms. There is almost no interaction between ontologies based on different base
languages. Figure 5.2 shows few of the boundaries.

The goal of this thesis is to bridge the boundaries and allow to share ontologies between
the worlds.

60

5.4 Software Support

SUMO,
relation, ...

CRM
CIPHER

CYC

DAML OCML CYCL

XML, web oriented Lisp

Separate worlds

ontology

formalism

base language

Figure 5.2: Separated world of ontology formalisms

5.4 Software Support

The most common way how to support multiple formalisms are I/O plugins for ontology
editors. Almost every editor provides plugins for formalisms similar to the internal one
and the information loss is increasing with difference between the internal and exported
formalisms.

One of the leading ontology editors is Protégé, developed at Stanford Medical Infor-
matics institute [47]. Protégé can be used to import, edit and save ontologies in CLIPS,
RDF, DAML+OIL, XML, UML and OWL. For the first four formalisms is this function-
ality provided by I/O plugins. The OWL plugin has been added quite recently and it
provides also modelling environment for development of OWL ontologies. The original
frame-based metamodel of Protégé was extended to support constructs from description
logic. The OWL Plugin provides a mapping between its API and Jena parsing library,
which is used for importing and saving OWL ontologies. Transformation between meta-
model of Protégé and external formats is lossless. However there is no mechanism for
handling the situation of transformation between two external formats. For example,
when an OWL ontology is imported to Protégé, exported to CLIPS via Protégé meta-
model and then back to OWL again via Protégé metamodel, a lot of information is lost.
E.g. in ontology tambis-full.owl1 classes defined using owl:EquivalentClass are missing
and information defined using owl:Restriction is lost.

5.4.1 Ontolingua

Ontolingua has been already described in section 4.5.3 in chapter about ontology for-
malisms. Here is important to emphasise, that Ontolingua has been designed as system
for portable ontologies. Its Frame Ontology serves as a dictionary of available constructs.

1http://www.cs.man.ac.uk/~horrocks/OWL/Ontologies/tambis-full.owl

61

5 Ontology Transformations Between Formalisms

Figure 5.3: Ontolingua, translation from one formalism into multiple ones

When importing ontology from a particular formalism, the content is expressed by
these constructs. The internal model is further translated to the target formalism. The
subset of formalisms capabilities is given by the Frame Ontology.

5.4.2 Generic Frame Protocol

A project aiming to unify access to frame-based formalisms appeared in 1997 – Generic
Frame Protocol (http://www.ai.sri.com/~gfp/) based upon the article P. D. Karp,
K. Myers, and T. Gruber, ”The generic frame protocol,” in 1995. For the generic model
of frame representation systems (with frames, classes, slots, etc.) it defines a set of access
functions (e.g., get a frame by its name, change a slot’s value in a frame). These functions
can be used by an application to access knowledge stored in any compatible FRS (e.g.,
USC/ISI’s Loom, SRI’s SIPE-2 sort hierarchy, CMU’s Theo, Stanford’s Ontolingua).
The implementation simply translates between the generic knowledge-base functions
and an existing FRS-specific functional interface.

5.4.3 Open Knowledge Base Connectivity

A more general approach was chosen in the Open Knowledge Base Connectivity (OKBC,
http://www.ai.sri.com/~okbc/) project. OKBC is a successor of GFP.

Similarly to GPF, OKBC is not a formalism (language) but only an interface to other
formalism. It defines a basic set of function the underlaying (frame-based) formalism
have to be capable to answer. The set consists of constructs commonly found in frame

62

5.4 Software Support

representation systems: classes, slots, constants, frames, facets, individuals and knowl-
edge bases.

OKBC supports also tell&ask interface to the languages.
The last version of OKBC specification, version 2.0.3, was published in 1998.

put-slot-values

Ontolingua
put-slot-values

Loom
put-slot-values

Ocelot
put-slot-values

Classic
put-slot-values

method dispatch

Figure 5.4: The architecture of the Common Lisp implementation of OKBC.

5.4.4 Chimaera

Chimaera (http://www.ksl.stanford.edu/software/chimaera) is a powerful system
that supports manual merging of multiple ontologies together and diagnosing individual
or multiple ontologies.

Chimaera supports multiple formalism on both input and output. In fact, it operates
through OKBC interface.

The ontologies are compared and merged. Chimaera resolves in the first step class-
name conflicts (decompose conflicting classes) and in the second step handle slots of
the classes modified in the prior step. Chimaera offers several methods, how the issues
can be solved. The software follows a wide range of available solutions of any possible
problem.

After the merging part, ontology is aligned. The software concentrates on taxonomy
fixing; it defines rules, which cannot be broken (e.g. a cycle in subclass hierarchy).

Ontology can also be aligned without the merging part.
Although Chimaera can communicate multiple formalisms, its internal model is based

on a subset of OKBC and thus only intersection of the subset and input and output
formalisms is migrated.

5.4.5 Further Tools

Ontomorph http://www.isi.edu/~hans/ontomorph/presentation/siframes.

html

java2owl http://www.daml.org/2003/10/java2owl/

excel2rdf http://www.mindswap.org/~rreck/excel2rdf.shtml

SWRL http://www.daml.org/2004/05/swrl-translation/Overview.html

63

5 Ontology Transformations Between Formalisms

5.5 Formal Definitions

In this section a formal definitions of transformation between ontologies will be given.
There will be also investigated a possibility of definition of a lossless transformation.

Definition 5.1 (Ontology Transformation Between Formalisms). Ontology trans-
formation between two formalisms is a function mapping ontology Ωs in formalism Fs

to ontology Ωt in formalism Ft.
τs,t : Ωs → Ωt

More practically, a transformation between ontology grammars is specified. Again,
only structural part of the grammar is transformed (CF, RF, and SF).

Definition 5.2 (Ontology Transformation Between Ontology Grammars).
Transformation between ontology grammars is a function mapping ontology grammar
Ψs in formalism to grammar Ψt.

τs,t : Ψs → Ψt

An important question is the amount of information lost during such transformations.
Unfortunately, it can be shown, that due to incompatibilities between the existing for-
malisms it is impossible to guarantee that the transformation will be information lossless.

For example, when transforming between the OWL (section 4.7.9) and taxonomy
formalisms, properties defined in OWL must be completely omitted. It means the C

set is smaller (‖COWL‖ > ‖Ctaxonomy‖). On the other hand, some features must be
approximated, e.g. restrictions. When the information about restrictions on particular
class disappear, it can be replaced by adding relations subclassOf and thus enlarging of
the R set (‖ROWL‖ < ‖Rtaxonomy‖).

The only possibility how to compare results of such transformation, is when both on-
tologies are in the same formalism, i.e. only after carrying out the double-transformation
(from Fs to Ft and back):

τt,s(τs,t(Ωs)) S Ωs. (5.1)

Definition 5.3 (Lossless transformation of ontology between formalisms). If
both τt,s and τs,t transformations are lossless, τt,s(τs,t(Ωs)) = Ωs.

Theorem 5.1 (Lossless transformation can be defined between formalisms in
≺ relation). If there are two formalisms Fs and Ft in ≺ relation, there can be defined
a lossless transformation from Fs to Ft:

Ψs ≺ Ψt ⇒ τt,s(τs,t(Ωs)) = Ωs

A proof of this theorem is obvious as the formalism Ft contains all constructs available
in the formalism Fs, see the definition 4.6 at page 24.

A lossy transformation can both loose information (some concepts are missing in the
double-transformed ontology), but there can be also more concepts. Reasons were shown
earlier in this section.

64

5.5 Formal Definitions

Definition 5.4 (Purely lossy transformation). A purely lossy transformation does
not approximate constructs in the source formalism by construct of the target one, but
omits all constructs without exact counterpart.

Theorem 5.2 (Purely lossy transformation keep the ≺ relation). If there are two
purely lossy transformations τs,t and τt,s, they keep the ≺ relation between the ontologies:

τs,t and τt,s are purely lossy ⇒ τt,s(τs,t(Ωs)) ≺ Ωs

Again, a proof is obvious from the definitions 4.6 and 5.4.

65

5 Ontology Transformations Between Formalisms

5.6 Generalised Ontology Formalism

Babelfish: A living fish which, when placed in your ear, will live

there and translate any form of language for you.

(Douglas Adams, The Hitchhiker’s Guide to the Galaxy)

The approach presented in this thesis is a syntactical transformation of ontologies
using an internal model, consisting of concepts and binary relations between them. The
most important feature is a tendency to define an abstract formalism with only few
symbols. The formalism describing the model is called Generalised Ontology Formalism
(GOF).2

Other attempts to solve ontology migration between multiple formalisms tend to us-
ing rich languages covering all features of desired formalisms. Such language become
obsolete, whenever a new formalism with a new construct appears.

On the contrary, GOF lowers the limitations of the formalism in order to be able to
describe a wide range of possible situations, even not yet investigated. This concept
does not require extension of the model language for every new supported formalism.
An example of a graph representing a knowledge base in GOF is in figure 5.10, page 71.

The basic idea of GOF is similar to RDF, but the binary relations are not concepts
themselves and have no attributes. This allows drawing relations as arrows and the
knowledge base as a graph. RDF based formalisms are hard to be drawn – arrows
(properties) can be subclasses of other arrows. The usage of namespaces in GOF have
been inspired also by RDF.

Naturally, the best results can be achieved with a design of a transformation be-
tween two particular formalisms directly, with maximum attention to the least detail
comparing to introduction of a general transportation formalism (principle described in
section 5.3.1). But regarding the number of available formalisms and the expectation
that there will emerge soon new ones, the direct mapping between all formalism is unfea-
sible. At the moment when a “winner” formalism emerge, there can be precisely specified
transformations between all the formalisms and the final one. Until then, writing spe-
cialised transformations for provisional formalisms, which could be soon abandoned, is
wasting of time.

The methodology presented in the further text defines six relations, which can appear
in the knowledge base. The selected relations represent the basic relations between
concepts found in all considered formalisms and express the structural part of ontologies.
The design is focused mainly on frame-based formalisms and description logic, but it
can also be used for other systems like lattices, topic maps, or even ER diagrams, Java
class hierarchy, etc.

To access different formalisms, there are so-called gates. The gates read or write a
corresponding formalism and transforms ontologies in the formalism into the internal
form. Gates contain also a metamodel of the formalism (formalism-specific ontologies).

2During the work on GOF it had a code name BabelFish, because it should serve as a connector
between various (ontology) languages, similarly to the fish in The Hitchhiker’s Guide to the Galaxy.

66

5.6 Generalised Ontology Formalism

To achieve more accurate transformation results, it is possible to define a mapping
between the gate ontologies for selected pairs of formalisms. Such transformation then
takes advantage of knowledge, which concept in the source formalism corresponds to
which concept in the target formalism.

The approach chosen in this thesis is similar to the Pivot Approach presented in
section 5.3.2. Ontologies are translated into internal formalism and then to the target
one. Instead of using the richest language, a simple one is selected. The Mapping
Approach can be easily achieved by providing the mapping between gate ontologies. And
the idea of the Layered Approach and the Family of Languages is in general unusable,
because the languages considered do not form a lattice, i.e. there is no (or small)
intersection among the languages.

The methodology has been used in the CIPHER research project for re-using upper
ontologies (like SUMO or CRM, sections 4.10.4 and 4.10.5) from formalisms not covered
by the CIPHER tools (DAML, OWL).

It is further shown that an extension of the SumatraTT system ([2]) can be used to
implement such transformations in a graphical user interface. All the gates of GOF and
all supported operations are represented by input/output modules in SumatraTT. The
graphical interface is used for easier setup of the transformation and for testing. Details
of SumatraTT are described in the chapter 6.

5.6.1 Evolution of Relations

The original idea started with only two kinds of relations in the beginning: is-a and
has-a. The relation is-a should cover both the relations subclassOf , instanceOf . The
relation has-a is the selected mapping for properties definitions and assignment values
to properties of instances.

The running example in the intended formalism is in figure 5.5. For simple formalisms
(e.g. taxonomies) it would be sufficient, but use of properties introduces ambiguity.

Moreover, there is a strong difference between subclassOf and instanceOf and be-
tween property definition and assignment in almost all the studied formalisms. For this
purpose, the original set of two relations has been extended to:

• relations describing the structure – subclassOf (−I) and instanceOf ((),

• relations defining properties hasDomain (−J) and hasRange

• relations for assignment values to particular properties of a concept hasV alue (→)
and propertyOf (−<−)

This separation of definitions allows the system to distinguish more precisely between
terms of the studied formalisms. The extension to six relations allows to have unam-
biguous graph. Figure 5.10 shows the running example using all six relations.

In the next section the model will be described thoroughly.

67

5 Ontology Transformations Between Formalisms

h u m a n

h a s -fa th e r

m a n wom a n

Ad a m

Ab e l

Ca in

Eve

h a s -m oth e r

assign-Afather

assign-Cfather

assign-Amother

assign-Cmother

is -a

h a s -a

Figure 5.5: Running example using is-a and has-a relations

5.6.2 Generalised Ontology Formalism Definition

The Generalised Ontology Formalism can be most easily described as a graph with a set
of uniform vertices (concepts) and six kinds of edges (relations). The edges represent
different relations between the concepts.

The set of relations consists of:

instanceOf (() is used for decreasing the abstractness of the concept. It corresponds
to the is-a relation in frames.

subclassOf (−I) expresses the specialisation relation between a more general and a
more specific concepts.

has-domain (−J) “domain of a property”

has-range (−�) “range of a property”

propertyOf (−<−) “an assignment of a value to an instance of a property domain”

has-value (→) “a particular value of a property”

For better view into the intended use of relations, their meaning in frame-based for-
malisms is given in the following list:

instanceOf, (– a relation between a class and its instance (Adam (man) and
also a relation between slot definition and an assignment (assign-Afather (
has-father).

68

5.6 Generalised Ontology Formalism

subclassOf, −I – inheritance (man −I human)

has-domain, −J – has-father −J human means a class human has a slot has-father.

has-range, −� – has-father −� man means, that a type a slot has-father is a class
man.

propertyOf, −<− – assign-Afather−<−Abel, the assignment concept must be an instance
of a property, which domain is a class; the other side of −<− must be an instance
of this class: β −<− IA ⇒ ∃α, β (α ∧ ∃A, α −J A ∧ IA (A.

has-value, → – assign-Afather → Adam, the assignment concept must be an instance
of a property, which range is a class; the other side of → must be instance of this
class: β → IB ⇒ ∃α, β (α ∧ ∃B, α −� B ∧ IB (B.

Now, GOF ontology grammar can be defined in the way introduced in chapter 4:

ΦGOF = ({concept}, {(,−I,−J,−�,−<−,→}, {}, {}, {}) (5.2)

In the further text there will be used infix notation of GOF relations, i.e. “→ (A, B)”
will be written as A → B.

The following several figures show basic shapes expressing common constructs in the
analysed formalisms.

h u m a n

m a n

a) b)
m a n

c)

Ad a m

h u m a n h a s -fa th e r m a n

Ab e l a s s ig n Afa th Ad a m

d)
h a s -fa th e r

Figure 5.6: Examples of GOF relations

The most important relation is a subsumption. Figure 5.6a shows this relation. Very
similar is making instance from a class, showed in figure 5.6b. The instance relations is
also used for properties and assignments.

A definition of a property/slot requires multiple concepts and relations. A property is
represented as a concept with two relations – range and domain. This simplest situation
is in figure 5.6c. A use of property (in this work called assignment) is in figure 5.6d.
The assignment concept relates to the definition property concept (using instanceOf
relation), the source instance (using valueOf) and the value of the assignment (using
hasValue).

69

5 Ontology Transformations Between Formalisms

cla s s -a c la s s -b

s u b cla s s -b

in s ta n ce -s bin s ta n ce -a

p rop e rty

a s s ig n m e n t

Figure 5.7: Sample Ontology in GOF

A simple ontology with all relations is in figure 5.7.

GOF formalism defines no restriction how the relations have to be combined. It allows
to cover wide range of possible situations.

a) b)

Ad a m

a s s ig n Ach 1 Ab e l

h a s -ch ild

Ca in

Ad a m a s s ig n Ach ild

Ab e l

h a s -ch ild

Ca in
a s s ig n Ach 2

Figure 5.8: Variants of arrays in properties

For example, assigning a vector value into a slot in frames can be done by multiple
→ relations (5.8a), similarly multiple values can be done by multiple −<− relations (see
figure 5.8b).

Description logics allow to define properties without determination of domain or range.
Such case is shown in figure 5.9. In frame-based formalisms, this situation can be solved
either by using a > concept or omit such property at all.

a)

b)

h u m a n h a s -fa th e r

h a s -fa th e r m a n

Figure 5.9: Partially defined properties in DLs

70

5.6 Generalised Ontology Formalism

h u m a n

h a s -fa th e r

m a n wom a n

Ad a m

Ab e l

Ca in

Eve

h a s -m oth e r

assign-Afather

assign-Cfather

assign-Amother

assign-Cmother

Figure 5.10: Running example using the generalised ontology formalism

To simplify merging of concepts from different sources we use also a namespace as a
part of the literal in the same way XML does. Finally, the namespace and a name of a
concept becomes an identification of the concept.

At the end of this section, a whole figure of the running example is given in figure 5.10.

5.6.3 Gates

A part of the whole generalised ontology formalism design is an idea of gates to particular
formalisms. It is similar to I/O modules of ontology editors. Their role is to transform
information from various formalisms into the internal GOF formalism. A schema with
gates is in figure 5.11.

5.6.4 Formalism-Specific Ontology

When a gate is going to move ontology from GOF to its native formalism, it has to
map concepts in the internal form into concepts used in the output formalism. For this
purpose, ontology specific to the formalism can be specified. Similar definitions exist for
all RDFS based formalisms mentioned in this thesis.

The formalism-specific ontology (FSO) is ontology of the formalism, which contains
terms like Class, Subproperty, Restriction, etc. and expresses relations between them.
In the further text there will be shown FSOs for the most important formalisms. They
have been already presented in [3].

71

5 Ontology Transformations Between Formalisms

ontology

ER

OW
L

Apo
llo

DAML

Generalised
representation

ontology

Figure 5.11: GOF Gates

1 2 3

Figure 5.12: Piece of ontology to be mapped

GOF framework provides a tool for mapping ontology’s internal form to FSO, called
mapping engine. The mapping engine is further described in the following section.

5.6.5 Mapping Engine

The mapping engine facilitates gates to map ontology concepts in GOF formalism to
concepts of a native formalism (FSO), i.e. to decide, which concepts are classes, instance,
properties etc. based on patterns recognised by the gate. The patterns are expressed in
the SF set of the formalism grammar, see examples in section 4.3.3.

Gates do not have to use the engine, but it significantly simplifies its programming.
For example, frames’s relation subclassOf (−I) is defined only between classes, e.g.

the engine rule has form conclass −I conclass. Description logic can have also subproper-
ties, so there are two rules – the one already shown and conproperty −I conproperty.

An advantage of the default engine is its ability to minimise information loss if GOF
form is invalid with respect to the set of rules. It identifies the smallest set of invalid
relations, which are then ignored or manually fixed.

Unfortunately, it can be proved that the mapping problem is equivalent to the graph
colouring problem and thus non-polynomial. Fortunately, the rules are very restrictive
in our case and thus the variable part is small.

Complexity of the Mapping Problem

The mapping engine uses a set of letters to express different roles of concepts in the
native formalism. The designer of the particular gate designs a set of rules, how the

72

5.6 Generalised Ontology Formalism

I (C
A (S
A −<− I
A −<− C

Table 5.1: Example of mapping rules

letters can be combined according to the used GOF relations. For example, let us take
a small piece of GOF ontology shown in figure 5.12 and rules enumerated in table 5.1.
Then the engine has to evaluate the expression

(

(

(1 = C)∧(2 = I)
)

∨
(

(1 = S)∧(2 = A)
)

)

∧
(

(

(2 = I)∧(3 = A)
)

∨
(

(2 = C)∧(3 = A)
)

)

.

(5.3)
The solution is

1 = C

2 = I (5.4)

3 = A.

Definition 5.5 (Basic Mapping Problem). Let us have a set of letters L and a set
of rules in the form X → Y , where X and Y are from L, → is one of the relations
defined in GOF formalism, and ontology is in GOF formalism.

The task is to assign one letter from L to each concept in the ontology and satisfy all
the rules.

Theorem 5.3 (Mapping Problem Complexity). The mapping problem is a non-
polynomial problem for ‖L‖ ≥ 3.

Proof. The graph colouring problem is in the NP-complete class for number of colours
greater or equal to three [12] and can be transformed to the mapping problem.

Transformation of the colouring problem to the mapping problem: the colours are
mapped to letters and the set of rules will be the set {C1 → C2 | C1, C2 ∈ L, C1 6=
C2}.

The mapping engine solves a slightly more difficult problem, because if there exists
no valid mapping, it tries to find the best mapping while ignoring as few relations as
possible. The algorithm used for searching is based on approach known as iterative
deepening.

5.6.6 Models of Selected Formalisms

OCML, Frames

Frame based formalisms have very simple schema. It consists of classes, which contain
slots. An instance can be derived from a class. Values can be assigned to slots either in

73

5 Ontology Transformations Between Formalisms

Instance

typeOf

Slot
Relation

slotType

slotValue

Class

hasSlot

subclassOf

Figure 5.13: FSO of frames

C −I C inheritance between classes
I (C instance of class

A (S assignment is an instance of a slot definition
S −� C range of a slot is a class
S −J C domain of a slot is a class
A −<− I assignment is connected to a particular instance
A −<− C . . . or a class (default value)
A → I a value of assignment is either and instance (including literal)
A → C . . . or a class (ApolloCH extension)

Table 5.2: Mapping rules for frames

class definitions (default values) and/or instance definitions (more common way). Values
can be either literals or instances. The schema of frames is shown in figure 5.13.

As a small extension, ApolloCH also allows assigning also a class to a slot (fulfilling a
request from practice). The figure can be very simply modified to express this extention
– it is sufficient to add a −� relation between slotV alue and Class.

OCML have much more features, but all of them are procedural and thus not displayed
in the figure.

Also a set of rules for the mapping engine is rather simple and is listed in table 5.2. In
this table, C is a shortcut for Class, I – instance, S – definition of a slot, A – assignment,
i.e. particular value of a slot.

RDFS

The RDFS FSO is slightly larger, because it contains explicitly defined all kinds of
relations (domain, range) and it includes features not present in frames – subPropertyOf,
isDefinedBy, comment etc. The model is based on the official w3c model of RDFS
standard expressed in GOF.

Spurious relations are connected to the XMLLiteral concept. The XMLLiteral is a

74

5.6 Generalised Ontology Formalism

Property

domain subPropertyOf range

Literal

Resource

Class

subClassOf

XMLLiteral

Datatype

seeAlso label isDefinedBy comment

Note: In order to simplify the picture, instances of Class are represented as rectangles and

instances of Property as ovals. This notation removes plenty of (edges.

Figure 5.14: FSO of RDFS

subclass of Literal and an instance of Datatype at the same time. The more generic
concept Literal is an instance of Class.

OWL

Also the OWL FSO is the official w3c model expressed in GOF form. It is obvious from
figure 5.15, that the OWL formalism definition is rather complex.

Moreover, two parts are missing in the figure – collections and restrictions are not
mentioned for two reasons. First, these two parts are even more complex than this base.
Second, the structure of collections and restrictions is not as important for GOF.

A part of OWL is also RDFS, which is omitted, too. Thus, the complete figure of the
OWL FSO would be very complicated.

The mapping rules for the OWL formalism are listed in table 5.3.

5.6.7 (Un)Informed Transformation

The formalism-specific ontologies can be used also in transformations.

75

5
O

n
to

lo
g
y

T
ra

n
sfo

rm
a
tio

n
s

B
etw

een
F
o
rm

a
lism

s

Restriction

Class

onProperty hasValueallValuesFrom someValuesFrom cardinality

rdfs:Class unionOfcomplementOfdisjointWithequivalentClass

intersectionOfoneOf

rdf:Property

Thing

 differentFromsameAs

Nothing

xsd:NonNegativeInteger

rdf:List

rdfs:subClassOf

rdfs:subProperty

equivalentProperty

distinctMembers

AllDifferent

F
igu

re
5.15:

F
S
O

of
O

W
L

76

5.6 Generalised Ontology Formalism

C −I C inheritance between classes
P −I P subproperty
P −� C property range
P −J C property domain
P −� P a range of aproperty can be another property
A −<− I value of property of instance
A −<− C value of property of class
A → I value of property can be an instance. . .
A → C . . . or a class
P → I default value is an instance. . .
P → C . . . or a class
I (C instance is an instance of a class
A (P assignemt (value of property) is an instance of property

Table 5.3: Mapping rules for OWL

a)

b)

h u m a n h a s -fa th e r m a n

h u m a n h a s -fa th e r m a n

OWL:Cla s s OWL:Ob je ctProp e rty

Figure 5.16: Ontology in GOF without (a) and with FSO (b)

If the transformation provided by a gate is lossless (the information can be completely
expressed by the constructs of GOF), GOF can be seen as an ideal medium.

This is not the case of more complex formalisms. Some features (like some kinds of
restrictions) can be simulated by a specific structures. After converting these structures
back, they are interpreted in a different way and result in a different ontology.

There is an obvious demand to keep all information when converting from one for-
malism to GOF and back. For this purpose a special case has been defined and called
informed transformation.

The gate can connect concepts of the processed ontology to the concepts in its FSO. An
example of difference between ontology in GOF with and without FSO is in figure 5.16.

There then can exist a special transformation between two given formalisms using a
connection between ontology in GOF and a FSO. This transformation takes advantage
of knowledge of the source and target formalisms and in-advance-specified relations
between corresponding concepts.

77

5 Ontology Transformations Between Formalisms

Figure 5.17: Informed transformation

This kind of transformation is called informed transformation, because it is informed
about the source and target formalisms. The name is inspired by the A∗ algorithm. Like
the A∗ algorithm, the informed transformation should provide more precise results.3

To distinguish transformation with and without FSOs, the original one (not using
FSO) is further called uninformed transformation to express, that no information about
the original formalism is used.

There are three types of transformation between two ontologies:

Informed Transformation There exists a mapping of the source FSO to the target one.
The transformation between formalisms uses FSOs and the mapping between them.
Figure 5.17 shows its schema.

Informed Transformation with Mediators There exists (theoretically) a path of for-
malisms, where for every pair of succeeding formalisms a mapping between their
FSOs exists.

Uninformed Transformation If there is no way, how to use FSO, the transformation to
the pure GOF is performed. Figure 5.18 shows its schema.

The informed transformation corresponds to the Mapping approach mentioned in sec-
tion 5.3, while the uninformed transformation is generally similar to the Pivot approach,
but uses simpler language instead of the richest one.

3Providing informed transformation with worse results does not make sense.

78

5.6 Generalised Ontology Formalism

Figure 5.18: Uninformed transformation

5.6.8 Solution for Untransformable Parts of Ontology

As mentioned in the formal definition of ontology, there are two parts of ontology, which
cannot be transformed – a set of restrictions S and a set of actions A.

The set of restrictions can be stored together with the transformed ontology with
connections between rules in S and corresponding concepts. When transformed back
to the original formalism, the restrictions can be reconstructed and verified, wether the
result ontology is consistent according to S.

A processing of the action set is more dependent on the actual form of the actions.
Some of them can be processed even in GOF (e.g. actions launched at moment of assing
value to a slot), but for more complex actions (e.g. requiring access to the knowledge
base) no solution has been found, yet.

The tested ontologies did not have any action part, which is a rule in majority of prac-
tical ontologies. The only available ontology with actions is the time ontology described
in [28]. In this case (and probably in most similar situations) the actions do not make
sense in a different formalism, as it is tightly tied to the OCML formalism.

5.6.9 Operations

A set of operations can be defined on GOF. The most usable are subset, union, and diff.

The operations are very simple in fact – the design of the formalism allows obvious
definition of mathematical operations.

79

5 Ontology Transformations Between Formalisms

Feature RDF and RDF Schema Protégé-2000
Multi-class
membership

A resource can be an instance of
one or more classes

An instance can have only one
direct type

Range con-
straints

The value of the range property is
a single Class which constraints the
value of the corresponding property
to instances of that class

A value of a slot can be a value
of a primitive type or an in-
stance of a class. There can be
one or more classes that con-
strain the value

Containers There are three types of container
objects: bag, sequence, and alter-
native

Collections have to be en-
coded, e.g. by ordered lists

Namespaces Frame names are unique within one
schema; for multiple schemas, the
XML namespace facility is used to
associate each property with the
schema

Frame names are unique
within one project. Name con-
flicts are not resolved during
project inclusion.

Literal
markup

A literal may have content that is
XML markup but is not further
evaluated by the RDF processor or
it can be a primitive datatype de-
fined by XML

Literals can be either plain
strings, numbers, symbols, or
boolean values

Table 5.4: Summary of differences between the knowledge models of RDF and Protégé-
2000

Concepts from two ontologies are considered to be identical if both their namespace
and name are equal. Relations are equal if both their arguments are identical and the
type of the relation is the same.

Subset of ontology in GOF is simply a subgraph of the corresponding graph. It is
frequently used for extraction of a structure of the ontology by selecting only subclassOf
relation and corresponding concepts.

Union is a combination of two or more ontologies. The operation is equivalent to
union of the corresponding graphs.

Diff of ontologies selects the concepts and relations presented in only one of the
ontologies. The usage is similar to Unix command diff. Mathematically it is equivalent
to (O1 \ O2) ∪ (O2 \ O1).

5.6.10 Common Problems Solved

Similar problems to those met in this work are common problems in using frame-based
systems for ontology formalisms based on description logics. An example is the table 5.4
found in article Using Protégé-2000 to Edit RDF (http://protege.stanford.edu/
protege-rdf/protege-rdf.html).

80

5.6 Generalised Ontology Formalism

cla s s -a c la s s -bp rop e rty

s u b p rop e rty

Figure 5.19: Subproperty in GOF

Hu m a n

p a re n tOf

fa th e rOf

Figure 5.20: Impossibility to draw a graph with subproperty in RDFS

Following sections describe the problems found during translations using GOF for-
malism. In fact, the problem does not lie in expressing any feature in GOF, but in
transforming such a construct into a particular formalism. The structure representing
ontology in GOF can change when ontology is being stored into a particular formalism
(done by the corresponding gate).

5.6.11 Subproperty Problem

An example of a possible problem during a transformation between formalism based on
description logic and frames is the subproperty feature (see figure 5.19). Frames do not
provide any similar construct – it is not possible to specify a “subslot” as a subclass of
a slot. The subproperty makes drawing RDFS knowledge base as a graph impossible.
Such attempt is sketched in figure 5.20.

Figure 5.21 shows the running example with a subproperty added. The properties
has-father and has-mother can be generalised and a relation has-parent can be their
common predecessor. Several kinds of transformation have been investigated.

Although the primarily intended solution has been casted aside, this suggestion used
to emerge in discussions, thus it is preferable to explain it here.

This solution assumed structural change – the property splits to a property and a
class, the subproperty becomes a class and the property and all instances being targets
of such subproperty become instances of the new classes. Figure 5.22 shows resulting
schema. Such a solution makes sense – if some concept is a target of a relation has-father,
it means it is a father. The class Father is subclass of both Man and Parent.

Unfortunately, the solution becomes unusable, when the properties are not valid gen-
erally, but express for example personal views. Figure 5.23 shows an ontology with
subproperties (friendOf and hates, subproperties of knows), represented in terms of

81

5 Ontology Transformations Between Formalisms

h u m a n

h a s -fa th e r

m a n

Ad a m

Ab e l

assign-Afather

h a s -p a re n t

wom a n

h a s -m oth e r

Figure 5.21: Subproperty in the running example

h u m a n

m a n

Ad a m

Ab e l

assign-Afather

h a s -p a re n t

Fa th e r

Pa re n t

Figure 5.22: First (bad) solution of the subproperty problem

82

5.6 Generalised Ontology Formalism

GOF. Applying the prior solution, it leads to classes Known and Hated. If two opposite
views on one concept are present in the same knowledge base, it becomes unclear, who
likes the target and who hates it.

The most general solution is in figure 5.25. All properties turn into direct properties
of personS. Furthermore all instances have to be changed.

83

5 Ontology Transformations Between Formalisms

personS personTknows

friendOf hates

Figure 5.23: Ontology with subproperties

personS personT

knows

Knows

FriendOf Hates

Figure 5.24: Sample Ontology in GOF

Original ontology (from description logic):

a
friendOf
−→ c, b

hates
−→ c (5.5)

is changed to

a
friendOf
−→ c, a

knows
−→ c, (5.6)

b
hates
−→ c, b

knows
−→ c. (5.7)

5.6.12 Instance of Instance

A possibility to have a sequence of instanceOf (() relations appears to be a problem
for several formalisms. Further problems are connected to models of such ontologies [13].

The approach chosen in GOF is similar to RDF, so the (relation is similar to any
other relation and can appear relatively freely in a knowledge base.

The GOF formalism have to offer this capability, because it have to cover as wide as
possible range of constructs to be able to process formalisms containing them.

84

5.6 Generalised Ontology Formalism

personS personT

knows

hates

friendOf

Figure 5.25: Translated ontology

ASSIGNMENT1

ASSIGNMENT2

researcher-restr

owl:Restriction

owl:onProperty

owl:allValuesFrom

ResearchTopic

Researcher

researchInterest

PSfrag replacements

AcademicStaff

Figure 5.26: OWL restriction model in GOF

Moreover, GOF is working only on syntactic level, it does not define a model.
The (relation have been introduced in order to express decrease in abstractness

of a concept. If a formalism does not allow successive instances, it can be replaced
by subclassOf (−I) relation with a similar function (specialisation of a concept). For
examples, frames can keep only the last (relation and all preceding change to −I.

5.6.13 Restriction Handling

As stated above, the framework focuses on the structural part of the ontology. Therefore
GOF was not designed to cover completely the procedural part of the ontology such
as axioms, slot facets in OCML and restrictions in OWL. The transformation of an
ontology into GOF preserves validity of the axioms and restrictions. When an ontology
is transformed into GOF and back to the original formalism, axioms and restrictions can
be added to it again. In case the original ontology was consistent, the resulting ontology
with added restrictions and axioms is also consistent.

However, in ontology formalisms based on description logics, such as DAML+OIL

85

5 Ontology Transformations Between Formalisms

and OWL, property restrictions play an important role in definition of classes. There-
fore special attention was devoted to them. The example below shows the representation
of an OWL property restriction in GOF. The example was taken from the Knowledge
Acquisition ontology [19]. The representation in GOF using FSO can be seen in fig-
ure 5.26. The closest representation of restriction in frame-based languages is adding
a slot with a defined default value to a class. In our example, it means addding a slot
researchInterest with default value ResearchTopic to the class Researcher.

<owl:Class rdf:about="#Researcher">

<rdfs:subClassOf>

<owl:Class rdf:about="#AcademicStaff"/>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#researchInterest"/>

<owl:allValuesFrom>

<owl:Class rdf:about="#ResearchTopic"/>

</owl:allValuesFrom>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

5.6.14 Visualisation

The generalised ontology formalism defined above is capable not only of transforming
ontologies between formalisms, but it also allows further processing of ontology in a
uniform way. An example of ontology processing is its visualisation.

The visualisation helps human to better understand and manipulate the ontology
structure. The author believes, that visualisation in higher dimensions offers more con-
textual information about the investigated piece of a knowledge base.

George Miller in [32] discovered, that human is able to work with 7±2 concepts at
once. This limit have to be taken seriously and only small piece of information should be
displayed. Two (or even) dimensions allow to keep connected concepts close together.

Moreover, for humans is spatial orientation natural and could be used for easier nav-
igation in ontology.

A visualisation is used for a survey of unknown ontology, for understanding of its
structure and familiarisation with its concepts. The visualisation usually selects only
part of whole information (only some relations in our case, the subclassOf in most
cases). If whole information is displayed, the image ends with too dense graph, messing
the concepts rather than clarifying it.

An experience with graphical editors shows, that users tend to create ontology knowl-
edge bases in textual form. A failure of visual editor led to development of Apollo at
the Knowledge Media Institute (see section 4.9.1).

86

5.6 Generalised Ontology Formalism

Dimensions

The most common way of displaying ontologies in computers is a tree similarly to files
are presented in operating systems. In fact, it is a one-dimension (maybe one-and-half)
visualisation, as expanded concepts are sorted in one dimension (usually vertically from
top to down).

It perfectly servers for ontologies with several concepts. At the moment the ontology
grows to several tens concepts, the navigation becomes more and more lengthy and
tedious. For hundreds of concepts it is necessary to introduce supporting search – it is
impossible to find a concept effectively.

Figure 5.27: Tree (1.5D) visualisation of ontology

Figure 5.27 shows an example from ApolloCH editor. It is clear that for concepts in
the middle there is difficult to decide their parents. Even in simple ontologies (under

87

5 Ontology Transformations Between Formalisms

Figure 5.28: 2D visualisation of ontology (TouchGraph)

hundred concepts) is impossible to find a particular concept. This can be tested with
the Historical Architecture ontology, mentioned in section 5.8.2.

A better way of presenting an ontology structure is to use more dimensions – two or
three. The two-dimensional visualisation provides more natural view of the structure
and allows to expand nodes more deeply. The advantage of increased directly visible
depth is a better understanding of the expanded node. Figure 5.28 shows an example
of a 2D ontology representation.

An orientation in the 3D space is the most natural way for a human. The only
drawback is that the current tools for 3D interaction – glasses and gloves – are not
enough mature yet. Figure 5.29 shows an example of a piece of ontology.

With the increasing number of dimensions it is crucial how easily the system allows
a user to move and to concentrate to the topic of his interest. The system must offer
natural physical model of the investigated universe. The way chosen differ from system to
system. Some simply zoom into the requested point, while others change the structure to
emphasise relations of the point of interest with others concepts. An example of a spatial
navigator in a bigger structure is implemented for filesystem (http://sourceforge.
net/projects/xcruiser/). Further projects come from the sphere of visualisation of
biological data.

88

5.6 Generalised Ontology Formalism

Figure 5.29: 3D visualisation of ontology (Wilmascope)

89

5 Ontology Transformations Between Formalisms

Visualisation Gates

Within the GOF framework, several gates were implemented to fill models of different
visualisation systems and they have been tested on available ontologies.

For displaying the whole graph the main platform is GraphViz suite, especially the dot
tool for directed graphs. It offers rich enough set of available arrow types. Unfortunately,
the layout algorithm prefers put concepts to one line and dense graphs tend to become
a vertical line. For graphs with simpler structure (subclassOf) it gives reasonable out-
puts. GraphViz generates pictures automatically and is very appropriate for automatic
generation of ontology graphs. GraphViz was used for big ontologies presented in the
RDFS and OWL frame-specific ontologies (figures 5.14 and 5.15).

The most successful visualisation tried was the two-dimensional TouchGraph visuali-
sation (figure 5.28). It provides living image with the current, investigated concept with
its near neighbourhood. The tool allows selection of the deep of the shown information.
The best result are achieved with depth two there are displayed concepts connected to the
current one by up to two connections. It allows comfortable overview over the context of
the concept. A click to some concept moves the context to the new node. The user have
the right portion of information all the time. The TG project was used in extended form
also for displaying topic maps in Omnigator viewer (www.ontopia.net/omnigator).

A similar approach selects Prefuse. It keeps visible all the nodes, but repositions
them as focus moves between nodes. It allows understand the nearest neighbour, but
gets messy with a bigger distance.

Hypergraph employes hyperbolic geometry to visualise a (mostly) tree structure. It is
an effective way how to survey such structure e.g. subclassOf subgraph of an ontology.
The nodes too far from the selected one don’t show their name, but the structure is still
visible. Hypergraph is not capable to handle structures with multiple separate parts and
have problems with dense graphs.

There exist also other tools, but it was not possible to try all of them. A set of tools,
which will be tested in the future, comprises IsaViz (), very nice tool for RDF, Freemind
(freemind.sf.net) and others.

5.7 Implementation

The Generalised Ontology Formalism was implemented in order to prove the ideas in
the theoretical part of this work. There were written a library with the core of the
system and a series of modules prepresenting corresponding gates. Also the mentioned
set operations were implemented.

The implementation was done in Java for the intended platform independence. An-
other strong point in this decision is availability of numerous libraries providing I/O
access to the required ontology formalisms and visualisations.

For the OWL formalism two libraries were tested: Jena by Hewlet-Packard and
KAON. The Jena library was rather slower and more complex, but it was found to
be much more stable and reliable. The KAON library had serious problems with a com-

90

5.7 Implementation

Figure 5.30: Prefuse output in detail

Figure 5.31: Prefuse output – overview

91

5 Ontology Transformations Between Formalisms

Figure 5.32: Hypergraph output in detail

92

5.8 Results

mon habit in OWL – part of ontologies are written using OWL:Class and others with
RDFS:Class. The RDFS:Class were not accessible via KAON and thus are unusable. A
similar problem exists with properties.

The OCML formalism was accessed via the Apollo library. Another libraries were used
for visualisation as external applications and their names can be found in section 6.3.1.

The GOF implementation can be used from the Java programming language, but is
not very comfortable for the end user. The end user tend to use a convenient graphical
interface allowing a fast design of the requested actions.

As a such interface was chosen a data processing system SumatraTT designed by the
author and developed together with his students and colleagues. More details about
SumatraTT can be found in the chapter 6.

5.8 Results

The GOF approach was practically tested. In this section a set of ontologies will be
presented together with their transformation and description of the results.

5.8.1 Testing Environment

The time have been obtained as an average value of several measurements. Even though
the precise values are not important, only the growth of time with growing number of
concepts.

The test run on Pentium IV, 1.7 GHz, 512 MB of RAM. There were active no daemons,
only text mode, so whole memory/swap was at disposal to the tests.

During preparation of the test were various external influences eliminated. First,
the tests were done several times and the average time has been recorded. Second,
as the tests are so called microbenchmarks, their performance depends on an order of
test execution. To eliminate the long time of the first execution, the loading tests had
“warm-up.” Execution times for both the main ontologies are shown in

The following table shows execution times of loading the trivial ontology in OWL and
the historical architecture ontology in Apollo. There is evident exceptionally big value
for the first measurement, while the others are reasonably similar. The loading was done
repeatedly with and without FSO and the times are show in table 5.5.

5.8.2 Measurements

The set of processed ontologies consists of the following OWL ontologies:

Trivial Ontology is a simple ontology with classes Person, Man, and Woman and a
property father.

Wine1 is a subset of the following Wine ontology. It has been prepared for testing
purposes (to have a reasonably smaller ontology).

93

5 Ontology Transformations Between Formalisms

Apollo OWL

6.288 1.828
1.368 24

915 42
1.256 38

749 22
1.156 17

738 17
1.119 23

740 21
1.137 20

Table 5.5: Warm-up times for Apollo and OWL engines

Wine is a sample ontology accompanying OWL definition.

SUMO (Suggested Upper Merged Ontology) is one of the upper ontologies. A descrip-
tion was given in section 4.10.4.

OpenCyc OpenCyc is another upper ontology (described in section 3.4). Its importance
for testing is in its enormous size. This size led into problems in testing (memory
exhaust in the Jena or ApolloCH libraries).

Ontologies in the Apollo formalism are only two as this formalism was intended pri-
marily as the target:

Historical Architecture is an ontology developed within the CIPHER project for de-
scription of architectonical features of building.

CRM is the CRM ontology implemented in Apollo (see section 4.10.5).

From the non-classic formalism was bookmarks, particularly Mozilla bookmarks:

Bookmarks are sample bookmarks in Mozilla format.

Regardless of the intention to get accurate results, the measured times can only be
mutually compared. Moreover, only the order of the values should be regarded as the
exact times vary in tens of percent.

The transformation of OpenCyc between OWL and Apollo crashed somewhere inside
the Apollo library. The problem will be further investigated. At the time of writing this
tests, a new version of Apollo library was available, but incompatible with the original
way of accessing its XML plugin.

Because the tests with transformation of the OpenCyc ontology were not successful,
the whole process was further divided into several tests – loading from source formalism,
informed transformation or mapping and the whole process. Measurement of saving was
not important, because the times were similar to the loading ones.

94

5.8 Results

Ontology Formalisms ‖C‖/‖R‖ Time (ms)

Hist. arch. Apollo→OWL 178/205 1.051
CRM Apollo→OWL 183/281 985
Trivial ont. OWL→Apollo 4/2 47
Wine1 OWL→Apollo 72/82 97
Wine OWL→Apollo 713/1.724 4.543
SUMO OWL→Apollo 1.434/1.729 26.458
OpenCyc OWL→Apollo 71.939/85.919 (Apollo crash)

Table 5.6: Whole informed transformation times

Ontology Formalisms ‖C‖/‖R‖ Time (ms)

Hist. arch. Apollo→OWL 178/205 976
CRM Apollo→OWL 183/281 903
Trivial ont. OWL→Apollo 4/2 37
Wine1 OWL→Apollo 72/82 99
Wine OWL→Apollo 713/1.724 2.531
SUMO OWL→Apollo 1.434/1.729 35.560
OpenCyc OWL→Apollo 71.939/85.919 (Apollo crash)

Table 5.7: Uninformed transformation times

The first table, 5.6 shows times of the whole informed transformation and table 5.7
the same for uninformed transformation.

The other two tables 5.8 and 5.9 show only the loading times. Although the time of
loading of OpenCyc is very long (circa one and half hour), parsing of the input file by
the Jena library was quite fast – about tens of seconds. The rest is spent in processing
of the tree and in not optimised internal structures of GOF.

The long times, especially in processing of OpenCyc are due to non-optimal loading
of the OWL formalisms, which connects various concepts and thus intensively searches
in the knowledge base. This part will be optimised in the future..

As an independent part was tested an informed transformation. A knowledge base was
pre-loaded and not saved, so only the transformation was measured to be able to compare
with to the corresponding mapping in uninformed transformation. The table 5.10 shows
results.

For uninformed transformation, the mapping into the target FSO is important. In
the current implementation, the mapping engine is used. Although it has been shown it
is an NP problem, the achieved results are satisfactory. The table 5.11 shows timing of
the mapping engine.

In both informed and uninformed transformation can be seen, that the Wine ontology
is more demanding than the OpenCyc, although the OpenCyc is 50 times bigger. The
reason is a complexity of the Wine ontology. It has been developed as an example

95

5 Ontology Transformations Between Formalisms

Ontology Formalism Concepts ‖C‖ Relations ‖R‖ Time (ms)

Hist. arch. Apollo 178 205 999
CRM Apollo 183 281 742
Bookmarks Mozilla 148 147 1.832
Trivial ont. OWL 4 2 160
Wine1 OWL 72 86 154
Wine OWL 713 1.728 771
SUMO OWL 1.434 1.779 1.946
OpenCyc OWL 71.939 85.919 6.755.855

Table 5.8: Time of ontology loading without FSO (φC = ∅)

Ontology Formalism Concepts ‖C‖ Relations ‖R‖ Time (ms)

Hist. arch. Apollo 182 363 1004
CRM Apollo 187 464 804
Trivial ont. OWL 24 8 21
Wine1 OWL 107 188 357
Wine OWL 1.022 2.637 906
SUMO OWL 1.454 2.647 2.959
OpenCyc OWL 71.959 116.339 9.227.209

Table 5.9: Time of ontology loading with FSO (φC 6= ∅)

Ontology Formalisms ‖C‖/‖R‖ Time (ms)

Hist. arch. Apollo→OWL 178/205 1
CRM Apollo→OWL 183/281 1
Trivial ont. OWL→Apollo 4/2 3
Wine1 OWL→Apollo 72/82 14
Wine OWL→Apollo 713/1.724 2.010
SUMO OWL→Apollo 1.434/1.729 14
OpenCyc OWL→Apollo 71.939/85.919 476

Table 5.10: Informed transformation times (without loading and saving)

96

5.9 Conclusion

Ontology Target Formalism Concepts ‖C‖ Relations ‖R‖ Time (ms)

Hist. arch. OWL 178 205 1
CRM OWL 183 281 1
Trivial ont. Apollo 4 2 0
Wine1 Apollo 72 82 8
Wine Apollo 713 1.724 121
SUMO Apollo 1.434 1.729 31.976
OpenCyc Apollo 71.939 85.919 1.253

Table 5.11: Mapping times

ontology and contains many advanced features to emphasise various features of OWL.
On the contrary, OpenCyc is a production system and contains only few such features.

5.9 Conclusion

The Generalised Ontology Formalism provides both theoretical and implementation
framework for ontology transformation between formalisms. This formalism is used
as a dictionary in the process of information migration between different systems for
both data conversion and information interchange between the systems.

The relative simplicity of GOF makes it possible to develop transformations to/from
many formalisms and share ontologies from multiple sources in a uniform way.

GOF also makes it easier to perform operations on ontologies based on either equal
or different formalisms such as determining differences between ontologies, merging on-
tologies etc.

97

5 Ontology Transformations Between Formalisms

98

6 SumatraTT

The author of this thesis concentrated his efforts on data preprocessing during his PhD
study and mainly on a universal system for data transformations. Later he concentrated
on usage of ontologies and translations of ontologies. The research lead to development
of the system SumatraTT 2.0.

SumatraTT [2, 11] (http://krizik.felk.cvut.cz/sumatra) is a universal data pro-
cessing system, developed at Department of Cybernetics, CTU in Prague. Its primary
purpose was to provide a modular platform allowing module developers to concentrate
on their specific task while generic activities such as data loading, saving, various trans-
formations, and graphical representation are supported by a standard set of modules.

The system was designed as general data processing system originally aimed at data
preprocessing for data mining and data warehousing.

A screenshot can be seen in figure 6.1.

6.1 History of SumatraTT

During work on GOAL project (Geographical Information Online AnaLysis, [30]) there
was necessary to process raw data obtained from sensors measuring level of water in
water tanks and several other sources with temperatures, weather type etc. Data had a
format unreadable by available tools (MS Data Services for SQL Server, text drivers for
ODBC).

A small application in C++ was prepared for this simple task. Later, as required
operations become more complex, the engine was made general with an execution core
and a set of drivers for various data sources.

The data sources were defined by metadata describing type and connection details
(filename, connection to database, passwords etc.).

6.1.1 SumatraTT 1.0

Approximately at this time project Sol-Eu-Net started. A package for data preprocessing
have been implemented at the Czech Technical University within its frame.

The most important feature added was internal scripting language with a syntax very
similar to Java. Because of the similarity, both language and the system have got the
name Sumatra. Later, in order to distinguish the language and system, the language
was renamed to SumatraScript and the system to SumatraTT.

Writing a special programs in SumatraScript didn’t bring any advantage. The power
of embedded scripting language showed, when a library of templates were introduced.

99

6 SumatraTT

The final program was automatically generated from a template and a description of
processed data sources.

The description of required transformation (used template, details of the transforma-
tion) become a part of the metadata.

The system started to be used by external users and the metadata coding become a
problem. For such users has been developed a graphical user interface. It showed a list
of available templates, a list of data sources, and a pane for design of the transformation.
This interface allowed using of SumatraTT by non-expert users. As an implementation
language was chosen Java partially for platform independence, because the core was
going to be ported to Linux, and partially for its good design of user interface controls.

6.1.2 SumatraTT 2.0

At the end of the Sol-Eu-Net project, it was clear that for common users the idea of
separated data sources, templates, and metadata is too complicated and they are not
able to fill correctly transformation parameters as it required reading manual.

Also the scripting language become a problem. Only one developer1 learned Suma-
traScript and was able to write a template.

The author of this work decided to change the idea of metadata driver transforma-
tion and designed module-based framework. Later, he implemented the core and wrote
several basic modules. The whole system has got name SumatraTT 2.0.

Again, for platform independence, the Java programming language was chosen. For
this decision were more reasons – clear advanced access to databases (JDBC compared
to ODBC), multithreading as an integral part of the language, easy application interop-
erability, many available and free libraries, etc.

The choose of the language together with the modular design showed to be the best.
Today, in SumatraTT 2.0 there are modules implemented by different people.2 Espe-
cially for diploma thesis is SumatraTT ideal framework were students can show their
theories working and their modules can enrich the capabilities of the whole system. Also
malfunction modules can be easily avoided.

SumatraTT 2.0 is nowadays a user-friendly modular system for general data process-
ing, aimed mainly at data preprocessing for data mining and data warehousing (Ex-
traction, Transformation and Load process, ETL). It consists of an execution core, a
graphical interface providing a platform for defining the transformation, and a set of
modules solving various tasks of data processing. Some modules cover generic tasks and
there are also groups of very specialised modules targeted to specific problems.

The graphical interface helps the user to quickly build the intended transformation
without any programming, as the set of available modules is sufficient for most applica-
tions. In rare cases when the task goes beyond the scope of prepared substasks/modules,
it can require simple scripting.

1Steve Moyle
2Besides Petr Aubrecht, the most important modules were written by Martin Glogar and Lenka

Nováková. Few modules were done by various students.

100

6.1 History of SumatraTT

Figure 6.1: SumatraTT 2.0 screenshot

The idea of interconnected modules is similar to that used in the original SGI Explorer
(with about 150 modules, http://www.nag.co.uk/Welcome_IEC.html) and its solution
is very popular in many modern systems.

In SumatraTT, the most preferred approach to data processing is streaming – one
record is loaded, fully processed and saved. In this way huge data can be processed. An
exception to this rule are modules requiring all data available and thus appropriate for
smaller datasets (for example dynamic graphs). As a compromise solution, the concept of
an internal database has been introduced. It means that date is first stored temporarily
to the internal database, which is further processed by means of SQL.

SumatraTT is an open system with GNU Public License built on open technologies
– including popular GPL projects JFreeChart, BeanShell scripting, or McCoi database.
Using such libraries brings fast development. Moreover, the libraries are growing inde-
pendently on development of SumatraTT. This way, the whole system is being actually
developed by a number of developers.

The openness together with modularity (especially independence between modules)
enables creating a wide scope of modules, from which it is possible to choose appropriate
ones best fitting particular needs. Thus, modules of insufficient quality can be easily
omitted, while the best ones become a part of the official release.

The whole system offers a base of Pyle’s idea of Prepared Information Environment
introduced in [42].

101

6 SumatraTT

6.1.3 Graphical Interface for Data Preprocessing

SumatraTT 2 development is highly concerned with user’s convenience whenever pos-
sible – it offers e.g. automatic creation of project documentation or opening the most
recently edited project by default, see section 6.2.1. Why there is so strong emphasis on
convenience?

There exist several ways how to do data preprocessing. Experienced users tend to use
their rather low-level tools like SQL scripts, Perl, etc. Such a low-level processing offers
high performance, but it has serious drawbacks, namely rather high efforts spent on
script development and a rather difficult maintainability of such scripts by other people.

On the other hand, graphical user interface (GUI) makes the process of preparing a
transformation very fast, easy-to-debug, and easy-to-maintain. It also simplifies supple-
mental activities like documenting the transformation or deployment of the process to
multiple computers carrying out the transformation in parallel.

SumatraTT has been developed with an emphasis given to both the easy-to-use graph-
ical interface and powerful features provided by a wide scope of modules ranging from
simple to very specialised ones. Each user can choose modules appropriate to his/her
level of experience. In this way, it is possible to offer both the flexibility of graphical
systems and the power of scripting languages with only small limitations.

One of the aims of SumatraTT is to bring data preprocessing tools closer to non-
expert users who tend doing data preprocessing in restricted tools like spreadsheets as
well as to the users repeatedly writing single-purpose programs.

SumatraTT can be also used by experts as an experimental environment, and as a
test and verification platform allowing to design appropriate transformations, which can
eventually be re-implemented in a generic programming language.

An advantage of using SumatraTT is its uniform way of data representation, which
allows integrating it with a number of related tools providing e.g. data visualisation and
understanding. Future development plans include developing of inter-operability with
external application via web services, CORBA, etc.

Selected techniques making user’s work easy and fast:

• modules providing similar functionality are represented by similar icons,

• re-opening the most recently opened project on start by default,

• indicating progress of the transformation process on processing each record,

• several ways how to a module can be inserted,

• the project workspace can be enriched with user comments and graphics to doc-
ument the technique used (these components will also appear in the generated
documentation),

• automatic documentation function generates a complete documentation of the
project,

• use of drag&drop.

102

6.2 Features

6.2 Features

6.2.1 Basic Concepts

SumatraTT consists of a core and a library of modules.
The core is a shell, which allows designing a transformation by putting icons rep-

resenting individual modules modules onto a canvas and defining data flows between
modules simply by drawing lines between respective icons, setting up modules’ proper-
ties and managing the execution of the whole data transformation process. Moreover,
there are wizards at disposal, which are targeted at specialised tasks, like adding many
connections to database tables in a single batch, documentation, definition of groups,
etc.

Modules represent elementary tasks and are grouped by their functionality in a tree-
like structure. Modules cover all important areas of data processing. For the complete
list of available capabilities see section 6.2.5.

Modules implement rather simple actions, which the user can combine in order to
achieve the desired transformation. Such a split of complex functionality speeds up the
development, simplifies debugging and allows a number of ways how to combine modules
in order to get the required functionality.

The design of SumatraTT strictly separates two phases of a data transformation :
transformation design and execution. Some other data preprocessing tools for data
mining join both phases, assuming the amount of processed data is small enough and
the processing is fast. SumatraTT is expected to process large amounts of data (it has
been used to transform hundreds of megabytes of CSV files) and the transformation can
take for hours.

In the design mode, the modules are placed on the working area (canvas), inter-
connected, their parameters are set, and optionally documentation pieces are written.
Modules can be grouped into components in order to divide the whole project into logical
parts. Every component can be run separately.

In the processing mode, the prepared schema is executed. SumatraTT offers two ways,
how to run the project:

• from GUI, with convenient process supervision, or

• from the command line. This mode allows a delayed run (e.g. over night) and/or
a client/server configuration with clients sending project definitions to the server
to be executed remotely there.

Usually, the project is executed in the GUI environment on the same workstation, on
which it was designed. This approach is appropriate for the majority of application with
exception of processing a large amount of data.

An important design feature is the negotiation of a data structure done at the begin-
ning of the transformation process, not necessarily during creation of the transformation
schema. In such a case, the data structure in use is not restricted to that one known at

103

6 SumatraTT

the design time, but modules negotiate the most appropriate one and adapt themselves
to it. The negotiation is described in section 6.2.3.

SumatraTT can also cooperate with other applications. It can either launch another
application, provide it with data and collect results, or it can be itself launched by
another application in a silent mode without the GUI, only processing data.

According to the CRISP methodology, the data preprocessing phase takes a significant
part of a DM process. It itself consists of two steps: data understanding and data
preparation. In fact, both steps form a cycle, when data is iteratively preprocessed and
visualised to reach better understanding, which leads to another (modified) preprocessing
and visual output and so on until some condition has been reached.

This cycle can be of two kinds with regard to the condition stopping the iteration.
Either it is possible to calculate the condition – then it is easy to incorporate the cycle
directly into the transformation schema which can cycle without user’s interaction, or it
is not.

If we are not able to specify the appropriate stopping condition (say, “until the data
show some error values”) it is possible to divide the schema into parts and create groups
of modules. Each part can be executed independently and the iteration can be controlled
by user.

6.2.2 Advanced Features

SumatraTT system includes several advanced techniques used to extend its functionality.
One of the most useful features is SumatraTT’s autodocumentation capability. The

system automatically creates a complete documentation of the project schema, including
the overall schema and detailed settings of each module. User can optionally describe
textually selected parts to improve the documentation and make it more descriptive.
For further information see section 6.2.4.

SumatraTT makes it possible to wrap up known good solutions into so called Best
Patterns.3 A part of the system is a library of ready-to-use solutions of particular
situations called patterns. Patterns are parts of transformation schema consisting of
pre-setup modules prepared by experts to solve particular tasks. The user can select
a pattern according to his problem and the corresponding solution is then automatically
inserted into the current transformation schema.

A common approach has been chosen to fill potential gaps in functionality by intro-
ducing a scripting capability. Specific extensions of this usual technique is described
further in section 6.2.5.

SumatraTT has a special support for SQL databases, which can be accessed directly
by some modules, taking advantage of the SQL query language, many data miners are
familiar with. Data can be sorted, grouped, etc. Moreover, SQL enabled modules may
provide various statistics or algorithms, which need random access to data.

For projects requiring work with statistics and other operations which would be eas-
ily done using SQL, but having data in plain text files, SumatraTT offers its internal

3Best Patterns is a similar to Best Practices used in data mining.

104

6.2 Features

database. There is a way how to store data in its private data storage and work with it
without the necessity to install and set-up a connection to any external database. The
database engine is powered by the open source Mckoi database.

Besides generic functionality, in SumatraTT there are areas dedicated to specialised
topics. An example of such an important topic is the support of data mining process
and its typical tasks. One of them is making various types of subsets – fair subset, vario
subset, etc.

Neither structured documents can be avoided and SumatraTT has a part dedicated
to processing XML documents. The capabilities are described in section 6.2.5.

6.2.3 Stream design

The processing schema represents the data flow of the transformation. The schema
consists of modules and connections between them. Both parts are described in the
following sections.

The most important design decision in SumatraTT internal architecture concerns with
the architecture of connections. However, it is necessary to start with explaining the
architecture of a module.

Module Architecture

The hierarchy of modules shown in the user interface exactly corresponds to hierarchy
of directories within the modules directory.

A module consists of one jar file (Java ARchive) in directory modules. The file
contains a configuration file with complete parameters of the module, its Java classes,
and accompanying files (icons, etc.).

The parameters in the module configuration file include the name of the module, its
documentation, number of inputs/outputs, names of icons, and names of Java classes
the module is composed of.

There are up to three classes for one module: Processing, GUI, and Presentation.
The Processing class must implement the ModuleInterface system interface. It is the

only required class per module and represents the execution side of the module.
Most modules need to be set-up by the user. This is task for the GUI class. It is

simply a JFrame, which is shown, when the user wants to set-up module parameters
by means of the GUI. The GUI class is optional – if it is not present, SumatraTT will
ignore user’s actions aimed at module set-up.

The last class is intended to represent the module directly in the design area. It can
show process of the transformation within the schema. If not present, the module is
displayed as a box with the corresponding icon.

Connection Architecture

SumatraTT is designed to process huge amount of data. To limit the consumption of
operational memory, only a small data element is kept in memory. Such a data element

105

6 SumatraTT

is a vector of attributes similar to an SQL record. The processing is carried out record
by record – from fetching the record from a dataset, through transforming the record, to
storing the result a dataset. This approach allows unlimited size of data being processed
and it is appropriate for most of transformations. Special modules or group of modules
are at disposal for specific cases when this approach is not appropriate.

The record is stored into the connection between two modules. The source module
sets the content of the record and passes the control to the target module, which reads
the data from the connection.

The structure of the record is done within intermodule negotiation. The source module
sends message with the proposed structure to the target module, which can reject it. A
modified structure can be send, until both modules accept the final structure.

A special technique is used in order to decrease of necessity to copy data between
modules. The record attribute belonging to a connection can point to another attribute
from different connection. This shares the data between connections, usually between
two connections going to and from a simple module, working with only one attribute.
The others are shared and thus do not need to be copied. Therefore modularity does
not require massive copying and does not impact effectivity of the transformation.

SumatraTT supports various attribute formats from the usual ones (Integer, Double
– real number, String) to more special (Xml, Image, binary objects). The binary objects
use a table architecture to share Java objects between modules for special purposes. The
field handling include missing values like NULL in SQL databases.

Metadata

The connection description so far concentrated on the data side of transformation. In
processing in SumatraTT there is used also metadata. It has always a form of a small
XML document. Metadata is used for three purposes:

description of the whole dataset – record structure, statistics, etc.

record description – description of one particular record

commands – start/stop, eof, restart, user-defined commands

To serve all kinds of metadata, the connection in fact consists of two channels – data
and metadata. It is possible to use only one channel or both together. Descriptions
and commands are sent using only the metadata channel. When data is processed, the
metadata can be used for description of the particular record. For a detail of the schema
see figure 6.2.

An important feature helps to create new commands – messages unknown to the
module are sent further. This way the message can pass modules between the source
and the intended target without change.

The graphical interface also uses the metadata commands for communication with
modules. For example in the beginning of transformation the following sequence of
messages is sent:

106

6.2 Features

Figure 6.2: SumatraTT 2.0 Structure

<initialize> – initialise the module,

<prepareformat> – negotiate the record format between modules,

<start> – start processing.

The sequence can also run without the <start> command. It is used in so called “Init
Run” – some modules need to know the record formats in order to provide right user
interface (for example field selection module).

When a module finishes, it sends <eof> message. If the user decides to interrupt the
transformation by pressing the Stop button, system sends <stop> message.

A connection is tied also to the thread model of SumatraTT. The system uses threads
to parallelise processing of parts of the schema. Especially for transformations working
with multiple database connections is parallel processing an advantage.

Instead of launching a new thread for each module with an expensive synchronisation,
SumatraTT splits the schema to parts and sequential parts run in one thread. It removes
the synchronisation and makes the transformation almost as effective as writing the code
in pure Java.

6.2.4 AutoDocumentation

A documentation is an indispensable part of each project and often takes a lot of time.
Data preprocessing has to be documented for future reusing and data understanding.
When data quality becomes uncertain, it is necessary to check how the data was trans-
formed and which methods of preprocessing were used.

107

6 SumatraTT

Figure 6.3: Support for documentation in transformation schema

A HTML documentation generator was implemented to help with documentation both
globally on transaction diagram (project description) and individually for each module to
describe function of used module and its contribution for whole transformation process.

The documentation contains by default all module settings. User can improve the
documentation by including comments to both schema and module description. This
piece of information describes the function in the transformation schema (see figure 6.3).

The information generated automatically about the module settings is given by the
module author (it can for example contain a description of the module behaviour).

Documentation is generated in the HTML format in multiple files for simple navigation
between documentation details and easy distribution and presentation (see figure 6.4).
The left side contains an index with links to all used modules. The main part displays
the description of the whole schema (again with links to the modules details) or the
details.

108

6.2 Features

Figure 6.4: Project documentation in HTML format

6.2.5 Available Modules

The present set of SumatraTT modules is rich. The following section describes rather
groups of modules; description of all modules is a task for a documentation with many
pages.

The main focus of SumatraTT is targeted to the data processing and input/output
modules play the most important role. SumatraTT offers a wide range of supported
formats to read from or write to. The most important is access to relational (SQL)
databases and a plain-text files. Both have a comfort setup to tune the connection to
the least detail. Other formats include the DBF standard, Excel spreadsheet, WEKA
format for data mining tool or SQL INSERT commands. There are modules for artificial
intelligence application generating Prolog source or reading a Lisp source as structured
data. An important part of the library are XML modules. And finally there are very
specialised approaches like the group of 22 modules processing different ontology for-
malisms.

After the data is loaded, the generic transformations come into use. This group of
modules includes making subsets of both records and fields, joining them, mathematical
operations, and support modules for project debugging and benchmarking.

For data mining, there are modules dedicated to cluster analysis and time series and
others are being developed.

Some groups are described in their own sections: scripting support in the section 6.2.5,
XML in section 6.2.5, visualisation in 6.3.1.

Besides the large set of general modules there are sets of special modules targeted to

109

6 SumatraTT

Figure 6.5: Example of scripting in SumatraTT

a narrow domain. An example is knowledge management domain, which contains 22
modules for transformation between different formalisms and supporting operations.

Scripting Support

Although the number of modules is big enough for most application and still grows, it
cannot cover every small detail requested by the task. These gaps solves a scripting
support. The scripting module allows to implement the functionality demanded in Java
language. The most standard approach has been chosen – the scripting language is
BeanShell with syntax of Java 5. The BeanShell mediates access to all internal structures
and libraries, allowing in this way arbitrary action to be performed like native modules
written in Java.

In the future there will be possible to automatically generate a Java source of a
module using the script. A developer will implement the task in script module in a
short development cycle, quickly test its behaviour. After verification the content of a
new module will be generated, compiled and included in SumatraTT library.

There is also planned a support for other languages (Python, Perl, etc.) with libraries
available.

For a small example see figure 6.5. Function Generator represents data source and
generates samples of Sine function of range 〈−1, 1〉. Scripting module is used to discrete
samples into 5 values from set {−1,−0.5, 0, 0.5, 1}.

Module contains three parts of script:

110

6.2 Features

Figure 6.6: SumatraTT 2.0 XML processing

Init – initialisation part specifies module output format (called one time – used in ne-
gotiation between modules when transformation process is initialised) and all next
necessary initialisation of variables used in transformation process.

Process – processing part is responsible for transformation process. Script is called each
time when data record arrives into module. Incoming fields from input gate are
used as data source and values of output fields are set at the end of script. When
processing script is done, output record is sent to the next module as data flows
in SumatraTT transformation schema.

Finish – this part is called one time at the end of SumatraTT transformation process.
Sometimes user might demand to do anything when SumatraTT transaction fin-
ishes.

For the result of a transformation see figure 6.5. Chart presents behaviour of a Sine
function (source from generator) and its discrete behaviour.

XML

Processing of XML documents cannot miss in any preprocessing system as the popularity
of this format increases rapidly. In SumatraTT the XML format is supported internally
as a standard type of field.

111

6 SumatraTT

It is possible to load the XML, save it in several way – like compound document or
separated documents. User can use XSLT to transform it or use the scripting support
to do arbitrary operation.

SumatraTT also offers colourful visualisation of the XML documents.

Support for Module Development

It is expected for larger use of SumatraTT there will be necessary to create new mod-
ules for specific tasks. Although it is possible to make arbitrary transformation using
scripting, it will be much more convenient to use specialised modules.

SumatraTT provides wide support for fast module design. The only requirement for
module is to implement the Processing class and an XML description of the module.

Moreover, there are multiple classes included in SumatraTT in order to provide a
base for modules, so the module developer can concentrate only on the task. For most
modules, it is sufficient to override the appropriate method(s) to include the desired
behaviour.

A simple module can be implemented in few minutes by experienced user with Java
language knowledge. In the world of open source software, using already developed
modules as source examples is recommended and might be useful for new users.

For an example the Benchmark module has only three lines of code. The rest five
lines are used for better visual formatting. All the metadata, commands and reading of
data is left on the base class.

The graphical interface to the modules it the easiest one – it consists of simply a
JFrame, the common Java SWING class, which can be designed in any graphical interface
for Java (e.g. Netbeans). SumatraTT provides only storage for the parameters of
modules.

Author of a new module should write documentation for its module in HTML format.
This file is not mandatory, but it is strongly recommended. This documentation included
in module’s jar file is displayed in SumatraTT from mouse popup menu of the module.

Finally, the author can add the new module to the main Ant script, which automati-
cally packs the modules and deploy jar files in the right directory.

6.2.6 Amount of Processed Data

One of the planned use of SumatraTT is to load data warehouses. For this purpose it
has to be fast enough. Amount of such data is usually about hundreds of megabytes.

Currently implemented modules emphasise rather rich features than execution speed.
For many data mining applications the amount of data is small and the effectiveness of
the transformation run is not important comparing to number of available features in
order to change the data in many different ways.

Nevertheless, the I/O speed is satisfying – load from comma separated files load ap-
proximately 40.000 lines per second4. The speed will further increase after the rewriting
of the module using the Java New IO with low-level access to file.

4The measurement was performed on Pentim IV, 2.8 GHz, one record consisted of 30 attributes.

112

6.3 SumatraTT and Data Transformation Tasks

A similar situation is with the database connection, which is using advanced batch
processing to speed up the database (un)load. Speed of access to database is rather
given by the speed of connection to the database, effectivity of the particular database
engine and its driver.

6.3 SumatraTT and Data Transformation Tasks

Present offer of data transformation modules provided by SumatraTT is determined by
the needs of the data mining projects in which SumatraTT has been applied. We are
not going to describe all currently available modules in detail. Instead we will review
the basic groups of supported tasks by presenting them in several clusters, which are
reviewed in the sequence they often appear during a DM task:

Transition between different data representations and formats. Data exchange between
specified formats (e.g., from relational database to a set of Prolog facts) represents the
simplest task in this cluster. Propositionalisation of a relational database represents
much more complex problem belonging into this cluster – we are working on one possible
solution to this problem [53], but the corresponding module is not implemented, yet. It
should be noted that propositionalisation of some data sources can result in introduction
of sparse attributes and data reduction has to be applied.

Data understanding. The aim is to produce a data survey providing basic information
about the treated data as well as evaluation of their quality. One of the modules which
fall into this cluster is the First Touch Review described in 6.3.1. Elementary visualisa-
tion techniques simplify presentation of the generated results to the user – see figure 6.7
for a practical example.

Handling missing values, extremes and errors in data. This set of tasks is most often
ensured using statistical methods and it covers data cleaning and outlier detection as
well.

Change of data volume. Modules in this cluster cover such tasks as adding background
knowledge by enrichment (complementing information from other sources) or enhance-
ment (deriving additional attributes from the original source data). Important example
of enhancement is reverse pivoting, which is ensured by a dedicated module used often
when handling time series data. Further, there are contained here the modules concerned
with problems of data volume reduction. This can be achieved using various types of
aggregation, principal component analysis or sparsely connected autoassociative neural
nets. Handling sparse attributes belongs into this cluster as well.

Data visualisation has been introduced as an indisposable tool for communication
with the SumatraTT user as well as with the domain experts [23]. That is why the
corresponding means are treated in more details in the next subsection (see section 6.3.1).

Creation of data sources for modeling and evaluation. For modeling, the set of available
data has to be divided into training and testing subsets. If the size of the original dataset
is too big, the user can indicate the relative sizes of both parts and the corresponding
random division (sampling) is applied. This division has to ensure that the statistical
characteristics of the training set and of the original set remain unchanged. Other

113

6 SumatraTT

Figure 6.7: Scatter plot matrix for STULONG data – dependencies between pairs of
selected attributes: weight, systolic pressure, diastolic pressure, cholesterol,
nicotine level and time.

114

6.3 SumatraTT and Data Transformation Tasks

sophisticated approaches have to be used, when the source dataset is too small or biased.

6.3.1 Visualisation

As noted in the introduction, after loading data the data mining process continues by
visualisation of the data as the first step in data understanding. In SumatraTT there
are these levels of visualisation with increasing data understanding:

1. first-touch review

2. static

3. interactive

4. advanced

Each of these sets is already populated by a number of modules.

First Touch Review

Any data mining application commences by a report about the studied data from the
point of view of each used attribute: the structure, distribution, and frequency of values
has to be analysed separately for each attribute. Such a report is generated by the
First-Touch Review which informs about elementary statistical characteristics of indi-
vidual attributes and includes corresponding graphs and histograms. It serves as a quick
overview over the analysed data and provides the user with input he/she will need to
make the decisions concerning design of further processing, visualisation or choice of
attributes which could be completely omitted (due to constant values, excessively erro-
neous values, etc.). First-Touch Review is implemented by a module which needs no
setup.

Static

The static visualisation depicts relations between pairs of attributes and the correspond-
ing output is generated without user’s intervention (or with a very simple setup). Let
us recall as typical examples of static visualisations e.g. tabular list of values, graphs
(e.g. 2D/3D bars – see figure 6.8 or pie graphs – see figure 6.7), histograms, etc.

Interactive

Through interactive visualisation the user can reach more profound understanding of the
role of the individual attributes and explore some dependencies between them by asking
various questions. The data miner can e.g. click on a point in one of the 2D graphs and
the system answers by a number of items in the source data which fall into this point.
This goal is not achievable by static visualisation; hence an interactive environment is
required. SumatraTT provides several kinds of extended versions of static forms, e.g.
histograms and 3D graphs.

115

6 SumatraTT

Figure 6.8: 3D graph with column split wrt. classification

Advanced

To understand the results of the last set of advanced visualisation techniques special
knowledge is required. The user has to know what the particular type of the graph is
able to depict and how the resulting image should be interpreted. Modules for RadViz
visualisation or Parallel coordinates are typical representatives of this set.

6.3.2 Some additional modules

The openness and modularity of SumatraTT enable smooth cooperation between the
visualisation and processing modules – due to this feature the transformation processes
can be controlled using visual appearance of data.

A natural part of modules is its documentation, which can be displayed from its
context menu. It is necessary for more complicated modules like scripting module or
modules from advanced visualisation.

6.3.3 Practical Application in Data Preprocessing

SumatraTT has been used in several projects for data preprocessing.
In the GOAL project [31], it preprocessed data from several sources and transported

data between data warehouse and geographical information system.
In the Sol-Eu-Net project, whole package dedicated to data preprocessing for data

mining was solved by further developing of SumatraTT. For example, SumatraTT di-
vided dataset with vehicle accident into separate datasets according to year. Experiences

116

6.4 SumatraTT in Knowledge Management

with the project lead into a book [34] with a chapter describing data preprocessing and
SumatraTT.

In the STULONG project [26], SumatraTT was used for a complex data preprocessing
comprising advantage methods. The implementation of the used method enriched the
set of available modules.

6.4 SumatraTT in Knowledge Management

6.4.1 Testing Modules

During a work on ontology processing in SumatraTT several modules have been prepared
to test capabilities of both SumatraTT core and ontology engines. These modules mostly
generated graphical output representing the ontology. As their source the modules use
the ApolloCH library (see section 4.9.1).

Apollo2dot

The Apollo2dot was used for visualisation of a class inheritance. The module shows
classes and the structure of the inheritance and instances. It generates source file for
the GraphViz suite (particularly for dot). Its result is in figure 6.9 and shows a part
of annotation of a stories for South Bohemia in the CIPHER project. Instances are
represented by gray boxes.

PATExporter

One of the tasks of the CIPHER project was a generation of HTML variants of ontologies.
Together with so called Picture Annotation Tool (PAT), annotating a spatial information
by drawing and annotating regions on images, it was possible to generate a whole web
presentation.

A sample of PATExporter output is shown in figures 6.10 to 6.12. It is a part of a
bigger application guiding user through a set of historical monuments with information
about it and links to related items.

DAML2Apollo

In the early stages of work on ontology transformations, the DAML2Apollo module al-
lowed to investigate problems of migration of ontologies between the DAML and Apollo
formalisms. The problems found led to further development of the whole GOF frame-
work.

A development of this module ceased as it has been replaced by the GOF modules.

117

6 SumatraTT

SUO_all

SUO_land_area

SUO_building

SUO_clothing

SUO_character

SUO_family_group

SUO_fresh_water_area

SUO_geographic_area

SUO_human

SUO_recreation_or_exercise

SUO_stream_water_area

SUO_time_interval

castle

rozumberk-castle

vitkuv-kamen-castle

landstejn-castle

trebon-castle

krumlov-castle

historical-building

forest-area south-bohemia-forests

protective-clothing shield

shield-guidon-set

golden-shield-guidon-set

white-shield-guidon-set

red-shield-guidon-set

blue-shield-guidon-set

black-shield-guidon-set

symbol_set

SUO_city
hradec-city

SUO_state_or_province

south-bohemia

vitkovci-with-red-rose-heraldy

vitkovci

south-bohemia-swamps

nove-hrady

straz-nad-nezarkou

bystrice

usti

vitek_z_prcice

sezema

smil

vilem

jindrich

vok

division-property-celebration

vltava

beginning-of-new-era

Figure 6.9: A tree of class inheritance generated by the Apollo2dot module

118

6.4 SumatraTT in Knowledge Management

Figure 6.10: An entry page of the PATExporter output

Figure 6.11: HTML pages generated by the PATExporter module with an index of
classes

119

6 SumatraTT

Figure 6.12: An instance with an image attached with a list of properties

120

6.5 Implementation of Generalised Ontology Formalism in SumatraTT

6.5 Implementation of Generalised Ontology Formalism

in SumatraTT

6.5.1 GOF Implementation

There are two usages of the GOF (see 5.6) in SumatraTT. First, the formalism library
is used as a base for 22 modules representing gates and operations. Second, the GOF
formalism can be used as a background knowledge for the interface about the processed
data and can guide user in the selection of modules and their combination.

The SumatraTT kernel is flexible enough to support problem-specific data formats.
Thus the support for ontology processing required no modification of the kernel. A set
of modules was prepared to process GOF in SumatraTT.

Processing GOF in SumatraTT helps users to use the framework in a graphical way
and conveniently set up parameters.

6.5.2 Module Conversion

As soon as the GOF framework had been tested and produced a reasonable output, a
need to transform GOF gates into SumatraTT modules emerged. Instead of manual
creation of the modules, the process was made automatised.

A translation program has been developed making SumatraTT modules from GOF
gates – Moduliser. Each gate is asked for support of loading/saving and a corresponding
SumatraTT module(s) is (are) generated together with a simple GUI form.

If the gate supports loading of ontology in the given formalism, Moduliser creates
a module called FromXXX, where XXX is the name of the gate. The same happens for
saving, the name is then ToXXX.

All the new modules are than copied to the directory, where all SumatraTT modules
reside, and compiled as a part of the whole SumatraTT suite.

6.5.3 Example

In figure 6.13, there is a screenshot of ontology processing in the SumatraTT system.
The example shows loading two ontologies from the Apollo formalism, making union
and diff and saving the union back to Apollo and diff to both GraphViz (graphical tool)
and HTML table.

A migration of ontology between formalisms is rather easy to perform – the whole
design consists of two interconnected modules as shown in figure 6.14. A more complex
structure is done, when a verification step is required after the migration. An example
of a transformation with verification is in figure 6.15.

6.5.4 Background Knowledge of Transformation

SumatraTT is not only a means for ontology transformations. It also offers an interesting
aplication of knowledge management techniques. There is a chance to build an onto-

121

6 SumatraTT

Figure 6.13: Ontology processing in SumatraTT

Figure 6.14: An ontology migration between the OWL and Prolog formalisms

logy allowing description of successfully reusable transformations – see Best Patterns in
section 6.2.2.

6.6 SumatraTT Summary

GOF provides a base framework for research of ontology formalism conversion. This for-
malism is used as a dictionary in the process of information migration between different
systems for both data conversion and information interchange between the systems.

The relative simplicity of GOF makes it appropriate for developing transformations
to/from many formalisms and sharing ontologies from multiple sources in a uniform way.
It also makes easier performing operations on ontologies based on either equal or different
formalisms such as determining differences between ontologies, merging ontologies etc.

The generalised ontology formalism is implemented as a part of a system SumatraTT,
which provides a platform for generic data transformations. GOF is supported with
SumatraTT modules aimed at loading and storing the model from/to different ontology
formalisms (automatically generated from GOF gates) and for various kinds of data
transformation and visualisation.

122

6.6 SumatraTT Summary

Figure 6.15: An ontology migration with verification

123

6 SumatraTT

124

7 Conclusion

This thesis presents a new ontology formalism for ontology sharing, called Generalised
Ontology Formalism (GOF), consisting of six relations between concepts. Its purpose is
supporting migration of ontologies between formalisms with as small as possible informa-
tion loss. Among others, GOF provides a means for defining meta-models of formalisms
and thus it makes possible to study and compare their expressive power.

The theoretical part of the thesis introduces definitions of ontology, ontology grammar,
and formalism. These definitions allow distinguishing between the set of expressing
constructs (ontology grammar), which make possible to encode ontology, and the set of
all ontologies utterable by means of this set of expressing constructs (formalism). Such
a theoretical basis provides means for an explicit separation of the structural part of
ontology from the procedural one. All common ontology formalisms have been described
by means of this theoretical framework.

A framework for converting the structural part of ontology between different for-
malisms has been designed, implemented, and verified. The main idea consists in ex-
pressing the ontology by means of GOF. Thus, the ontology is transformed between
respective formalisms in two steps – first from the source formalism into GOF and then
to the target formalism. This allows migration of the structural part between any sup-
ported formalisms.

The transformation have been analysed from the point of view of information loss
during the conversion. The conditions for achieving lossless transformation were stated.
Two different methods of ontology transformations – called informed and non-informed
ones – were proposed.

For a pair of formalisms, between which the migration is expected to be carried out fre-
quently, specific (informed) transformation can be defined. The informed transformation
makes use of the knowledge of both the source and the target formalism meta-models.
Thus, a set of transformation rules, which is specific for the given pair of formalisms, can
be prepared and utilised in the course of the particular conversion. Because of its speci-
ficity, the informed transformation shall provide better accuracy of ontology conversion
than the non-informed one, which does not use the knowledge of mapping between the
source and target formalism meta-models.

The non-informed transformation makes possible to quickly include a new formalism
into the framework. The reason is that only 2n transformations are necessary for mi-
grating between any two of n formalisms. On the other hand, 2(n

2
) transformations are

necessary in the case of the informed one.
Particular formalisms are processed by so called gates, which transform ontologies

from the particular formalism to GOF and vice-versa. For each gate, the respective
Formalism-Specific Ontology (FSO) has been developed in terms of GOF, which defines

125

7 Conclusion

the set of meta-level concepts used by the formalism (concepts like Class, Instance, etc.).
It has been shown, that GOF can handle all the structures, which occur in all common

ontology formalisms, using various combinations of GOF relations. An advantage of this
simple formalism is the ability to ignore relations, which are not recognised by a partic-
ular gate, i.e. they have no corresponding analogy in the respective formalism. In this
way, ontologies can migrate between formalisms of very different expressive capabilities
without a need of a purposfully written converter.

The generic data processing system SumatraTT, which was designed by the author of
this thesis few years ago, has been chosen as the implementation basis for the theoretical
framework introduced by this thesis. SumatraTT has been equipped with an algorithm
making possible to automatically generate SumatraTT modules from descriptions of
respective gates. The respective gates’ FSOs are included for purposes of the informed
transformation.

The whole framework was verified on a number of ontologies of various size including
SUMO and Cyc, which is the largest publicly available ontology.

GOF is planned also as a platform for annotating an archive of the Best Patterns of
using SumatraTT modules. Thus, SumatraTT is not only a means for implementing
knowledge management applications, but it becomes an application domain itself.

126

Bibliography

[1] Petr Aubrecht and Luboš Král. Ontology Formalism Transformation. In Fernando
Galindo, Makoto Takizawa, and Roland Traunmüller, editors, Database and Ex-
pert Systems Applications – DEXA 2004, pages 95–99. IEEE Computer Society,
September 2004.

[2] Petr Aubrecht, Petr Mikšovský, and Luboš Král. SumatraTT: a Generic Data Pre-
processing System. In Database and Expert Systems Applications, pages 120–124,
Heidelberg, 2003. Springer. 5.6, 6

[3] Petr Aubrecht and Monika Žáková. Ontology Formalism Transformation. In Karel
Ježek, editor, DATAKON 2004, pages 191–200. Masaryk University in Brno, 2004.
5.6.4

[4] Petr Aubrecht, Monika Žáková, and Zdeněk Kouba. Ontology Transformation Using
Generalised Formalism. In Znalosti 2005 – sborńık př́ıspěvk̊u 4. ročńıku konference,
pages p. 154–161. VŠB-TUO, 2005. (in Czech).

[5] Franz Baader and Philipp Hanschke. A Scheme for Integrating Concrete Domains
into Concept Languages. Technical Report RR-91-10, Deutsches Forschungszen-
trum für Künstliche Intelligenz GmbH, Erwin-Schrödinger Strasse, Postfach 2080,
67608 Kaiserslautern, Germany, 1991. 4.6

[6] Tim Berners-Lee, James Hendler, and Ora Lassila. The Semantic Web. Scientific
American, May 2001. 3.6

[7] Pim Borst. Construction of Engineering Ontologies for Knowledge Sharing and
Reuse. PhD thesis, Tweente University, 1997. 4.2

[8] Hans Chalupsky. OntoMorph: A Translation System for Symbolic Knowledge. In
Principles of Knowledge Representation and Reasoning, pages 471–482, 2000. 5.3.1

[9] Pete Chapman, Julian Clinton, Randy Kerber, Thomas Khabaza, Thomas Reinartz,
Colin Shearer, and Rdiger Wirth. CRISP-DM 1.0: Step-by-step data mining guide.
CRISP-DM consortium, 2000.

[10] Oscar Corcho and Asunción Gómez-Pérez. A Roadmap to Ontology Specification
Languages. In Proceedings of the 12th European Workshop on Knowledge Acquisi-
tion, Modeling and Management, pages 80–96. Springer-Verlag, 2000.

127

BIBLIOGRAPHY

[11] Czech Technical University in Prague. SumatraTT Official Homepage, 2004.
krizik.felk.cvut.cz/sumatra. 6

[12] RNDr. Jǐŕı Demel. Grafy a jejich aplikace. Academia, Akademie věd České repub-
liky, Legerova 61, 120 00 Praha 2, 2002. 5.6.5

[13] Marie Duž́ı and Pavel Materna. Konceptuálńı modelováńı a ontologie z pohledu
logiky. In Karel Ježek, editor, DATAKON 2004, pages 99–118. Masaryk University
in Brno, 2004. 5.6.12

[14] Jerome Euzenat and Heiner Stuckenschmidt. Family of Languages’ Approach to
Semantic Interoperability, 2001. 5.3.4

[15] Dieter Fensel, Ian Horrocks, Frank van Harmelen, Stefan Decker, Michael Erdmann,
and Michel C. A. Klein. OIL in a Nutshell. In EKAW ’00: Proceedings of the 12th
European Workshop on Knowledge Acquisition, Modeling and Management, pages
1–16. Springer-Verlag, 2000. 4.7.7

[16] Thomas R. Gruber. A Translation Approach to Portable Ontology Specifications.
Knowl. Acquis., 5(2):199–220, 1993. 4.2, 4.4, 4.5.3

[17] Thomas R. Gruber. Towards Principles for the Design of Ontologies Used for Knowl-
edge Sharing. In N. Guarino and R. Poli, editors, Formal Ontology in Conceptual
Analysis and Knowledge Representation, Deventer, The Netherlands, 1993. Kluwer
Academic Publishers. 4.3.2, 5.1

[18] Ladislav Hejdánek. Nepředmětnost v myšleńı a ve skutečnosti. Oikúmené. OIKOY-
MENH, Prague, Czech Republic, 1997.

[19] Ian Horrocks. Knowledge Acquisition ontology , 2003. http://www.cs.man.ac.uk/-
˜horrocks/OWL/Ontologies/ka.owl. 5.6.13

[20] Ian Horrocks, Peter Patel-Schneider, and Frank van Harmelen. From SHIQ and
RDF to OWL: The Making of a Web Ontology Language. Journal of Web Seman-
tics, 1(1):7–26, 2003. 4.6

[21] Ian Horrocks and Ulrike Sattler. Ontology Reasoning in the SHOQ(D) Description
Logic. In Proceedings of the Seventeenth International Joint Conference on Artificial
Intelligence, 2001. 4.6

[22] ICOM/CIDOC. Definition of the CIDOC Conceptual Reference Model, Version
3.4.10, March 2004. http://cidoc.ics.forth.gr/docs/cidoc crm version 3.4.10.pdf.
4.10.5

[23] Michal Jakob. Symbolic Rule Extraction and Visualization using Network Function
Inversion. pages 230–231, Technická 2, 166 27 Prague 6, 2004. In Workshop 2004
[CD-ROM]. 6.3

128

BIBLIOGRAPHY

[24] Aditya Kalyanpur, Daniel Pastor, Steve Battle, and Julian Padget. Automatic Map-
ping of OWL Ontologies into Java. In Proceedings of Software Engg. - Knowledge
Engg. (SEKE) 2004, Banff, Canada, June 2004. 4.5.6

[25] Jörg Uwe Kietz, Anca Vaduva, and Regina Zücker. MiningMart: Metadata-Driven
Preprocessing. In Proceedings of the ECML/PKDD Workshop on Database Support
for KDD, 2001.

[26] Jǐŕı Kléma, Lenka Nováková, and Olga Štěpánková. Trend Analysis in Stulong Data.
In Proceedings of the Discovery Chalenge 2004 – A Collaborative Effort in Knowl-
edge Discovery from Databases, pages 56–67, Prague: University of Economics,
2004. 6.3.3

[27] Vladimı́r Mař́ık, Olga Štěpánková, and Jǐŕı Lažanský a kol. Umělá inteligence 3.
ACADEMIA,, 2002. 4.3.2

[28] Kamil Matoušek. Representation and Processing of Uncertain Historical Time Pe-
riods. PhD thesis, Czech Technical University in Prague, Faculty of Electrical
Engineering, Technická 2, 166 27 Prague 6, Czech Republic, 2004. 4.5.4, 5.1, 5.6.8

[29] Michael R. Genesereth. Knowledge Interchange Format (KIF), 1998. http://

logic.stanford.edu/kif/kif.html. 4.4, 4.5.2

[30] Petr Miksovský and Zdeněk Kouba. GOLAP – Geographical Online Analytical
Processing. In Proceedings of the 12th International Conference on Database and
Expert Systems Applications, pages 442–449. Springer-Verlag, 2001. 6.1

[31] Petr Mikšovský and Zdeněk Kouba. Application A2 Specification. Technical report
TR11, INCO–COPERNICUS 977091 GOAL, Czech Technical University, Depart-
ment of Cybernetics, Technická 2, 166 27 Prague 6, 1999. 6.3.3

[32] George Miller. The Magical Number Seven, Plus or Minus Two. Psychological
Review, 63:81–97, 1956. 5.6.14

[33] Marvin Minsky. A Framework for Representing Knowledge. The Psychology of
Computer Vision, McGraw-Hill, 1975. 4.1, 4.5

[34] Dunja Mladenic, Nada Lavrac, Marko Bohanec, and Steve Moyle, editors. Data
Mining and Decision Support: Integration and Collaboration. Kluwer Academic
Publishers, 2003. isbn 1-4020-7388-7. 6.3.3

[35] Katharina Morik and Martin Scholz. The MiningMart Approach to Knowledge
Discovery in Databases. In Ning Zhong and Jiming Liu, editors, In Handbook of
Intelligent IT. IOS Press, 2003.

[36] Enrico Motta. Reusable Components for Knowledge Modelling: Case Studies in
Parametric Design Problem Solving. IOS Press, 1999. 4.4

129

BIBLIOGRAPHY

[37] Paul Mulholland, Trevor Collins, and Zdenek Zdrahal. Story Fountain: Intelligent
Support for Story Research and Exploration. In Proceedings of the ACM Conference
on Intelligent User Interfaces (IUI’2004), 2004. 5.1

[38] Lenka Nováková, Jǐŕı Klema, and Olga Štěpánková. Anachronistic Attributes and
Data Mining. In MIPRO 2004 - Computers in Education, pages 153–156, Croatia:
Mipro HU, 2004.

[39] Natalya F. Noy, Michael Sintek, Stefan Decker, Monica Crubezy, Ray W. Fergerson,
and Mark A. Musen. Creating Semantic Web Contents with Protégé-2000. IEEE
Intelligent Systems, 2(16):60–71, 2001. 4.9.1

[40] Marek Obitko. Ontologies Description and Applications. Technical Report GL–
126/01, Czech Technical University, Department of Cybernetics, Technická 2, 166
27 Prague 6, 2001. 4.4

[41] Marek Obitko, Václav Snášel, and Jan Šmı́d. Ontology Design with Formal Concept
Analysis. In Václav Sášel and Radim Belohlávek, editors, CLA, volume 110 of
CEUR Workshop Proceedings, 2004. 4.3.3

[42] Dorian Pyle. Data Preparation for Data Mining. Morgan Kaufmann Publishers,
Inc., San Francisco, CA, USA, 1999. 6.1.2

[43] Xiaolei Qian. Correct Schema Transformations. In Extending Database Technology,
pages 114–128, 1996.

[44] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Approach.
Pearson Education, 2003. 4.10

[45] John F. Sowa. Knowledge Representation: Logical, Philosophical and Computational
Foundations. Brooks/Cole Publishing Co., 2000. 4.1, 4.2, 4.10

[46] John F. Sowa. Architectures for Intelligent Systems. Special Issue on Artificial
Intelligence of the IBM Systems Journal, 41(3):331–349, 2002. 4.1

[47] Stanford Medical Informatics. Protégé Project Homepage, 2004. http://protege.
stanford.edu/. 5.4

[48] Olga Štěpánková, Jǐŕı Klema, Štěpán Lauryn, Petr Mikšovský, and Lenka
Nováková. Data Mining for Resource Allocation: A Case Study. In 5th IEEE/IFIP
Int. Conf. on Information Technology for Balanced Automation Systems (BASYS
2002), pages 477–484, Cancún, Mexico, 2002. Kluwer Academic Publishers.

[49] Heiner Stuckenschmidt. Ontology-Based Information Sharing in Weakly Structured
Environments, 2002. 5.3, 5.3.3

[50] Vojtěch Svátek. Ontologie a WWW. In D. Chlapek, editor, DATAKON 2002. Brno
: Masaryk University, 2002. 4.4

130

BIBLIOGRAPHY

[51] Alan M. Turing. Can a Machine Think? Mind, 59(236):433–460, 1950. 3.2

[52] Monika Žáková. Semantic Annotations. Master’s thesis, The Czech Technical Uni-
versity in Prague, 2005.

[53] Filip Železný. Efficiency-conscious Propositionalization for Relational Learning.
Kybernetika, 4:275–292, 2004. 6.3

[54] Regina Zücker and Jörg Uwe Kietz. How to preprocess large databases. In In Data
Mining, Decision Support, Meta-learning and ILP: Forum for Practical Problem
Presentation and Prospective Solutions, 2000.

131

